Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Methods ; 224: 10-20, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295893

RESUMO

AMPs are short, mainly cationic membrane-active peptides found in all living organism. They perform diverse roles including signaling and acting as a line of defense against bacterial infections. AMPs have been extensively investigated as templates to facilitate the development of novel antimicrobial therapeutics. Understanding the interplay between these membrane-active peptides and the lipid membranes is considered to be a significant step in elucidating the specific mechanism of action of AMPs against prokaryotic and eukaryotic cells to aid the development of new therapeutics. In this review, we have provided a brief overview of various NMR techniques commonly used for studying AMP structure and AMP-membrane interactions in model membranes and whole cells.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/análise , Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/química , Espectroscopia de Ressonância Magnética/métodos
2.
Biophys J ; 122(6): 1058-1067, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36680343

RESUMO

Antimicrobial peptides are an important class of membrane-active peptides that can provide alternatives or complements to classic antibiotics. Among the many classes of AMPs, the histidine-rich family is of particular interest since they may induce pH-sensitive interactions with cell membranes. The AMP caerin 1.1 (Cae-1), from Australian tree frogs, has three histidine residues, and thus we studied the pH dependence of its interactions with model cell membranes. Using NMR spectroscopy and molecular dynamics simulations, we showed that Cae-1 induced greater perturbation of the lipid dynamics and water penetrations within the membrane interior in an acidic environment compared with physiological conditions. Using 31P solid-state NMR, the packing, chemical environment, and dynamics of the lipid headgroup were monitored. 2H solid-state NMR showed that Cae-1 ordered the acyl chains of the hydrophobic core of the bilayer. These results supported the molecular dynamics data, which showed that Cae-1 was mainly inserted within the lipid bilayer for both neutral and negatively charged membranes, with the charged residues pulling the water and phosphate groups inward. This could be an early step in the mechanism of membrane disruption by histidine-rich antimicrobial peptides and indicated that Cae-1 acts via a transmembrane mechanism in bilayers of neutral and anionic phospholipid membranes, especially in acidic conditions.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Histidina/química , Austrália , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Água , Concentração de Íons de Hidrogênio
3.
Eur Biophys J ; 51(4-5): 335-352, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35576075

RESUMO

Amyloid crystals, a form of ordered protein aggregates documented relatively recently, have not been studied as extensively as amyloid fibres. This study investigates the formation of amyloid crystals with low frequency ultrasound (20 kHz) using ß-lactoglobulin, as a model protein for amyloid synthesis. Acoustic cavitation generates localised zones of intense shear, with extreme heat and pressure that could potentially drive the formation of amyloid structures at ambient bulk fluid temperatures (20 ± 1 °C). Thioflavin T fluorescence and electron microscopy showed that low-frequency ultrasound at 20 W/cm3 input power induced ß-stacking to produce amyloid crystals in the mesoscopic size range, with a mean length of approximately 22 µm. FTIR spectroscopy indicated a shift towards increased intermolecular antiparallel ß-sheet content. An increase in sonication time (0-60 min) and input power (4-24 W/cm3) increased the mean crystal length, but this increase was not linearly proportional to sonication time and input power due to the delayed onset of crystal growth. We propose that acoustic cavitation causes protein unfolding and aggregation and imparts energy to aggregates to cross the torsion barrier, to achieve their lowest energy state as amyloid crystals. The study contributes to a further understanding of protein chemistry relating to the energy landscape of folding and aggregation. Ultrasound presents opportunities for practical applications of amyloid structures, presenting a more adaptable and scalable approach for synthesis.


Assuntos
Amiloide , Lactoglobulinas , Amiloide/química , Lactoglobulinas/química , Agregados Proteicos , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Eur Biophys J ; 51(3): 193-204, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35380220

RESUMO

Defining protein oligomeric state and/or its changes in solution is of significant interest for many biophysical studies carried out in vitro, especially when the nature of the oligomeric state is crucial in the subsequent interpretation of experimental results and their biological relevance. Nuclear magnetic resonance (NMR) is a well-established methodology for the characterization of protein structure, dynamics, and interactions at the atomic level. As a spectroscopic method, NMR also provides a compelling means for probing both molecular translational and rotational motion, two predominant measures of effective molecular size in solution, under identical conditions as employed for structural, dynamic and interaction studies. Protein translational diffusion is readily measurable by pulse gradient spin echo (PGSE) NMR, whereas its rotational correlation time, or rotational diffusion tensor when its 3D structure is known, can also be quantified from NMR relaxation parameters, such as 15N relaxation parameters of backbone amides which are frequently employed for probing residue-specific protein backbone dynamics. In this article, we present an introductory overview to the NMR measurement of bimolecular translational and rotational motion for assessing changes of protein oligomeric state in aqueous solution, via translational diffusion coefficients measured by PGSE NMR and rotational correlation times derived from composite 15N relaxation parameters of backbone amides, without need for the protein structure being available.


Assuntos
Amidas , Proteínas , Difusão , Espectroscopia de Ressonância Magnética/métodos , Movimento (Física) , Ressonância Magnética Nuclear Biomolecular/métodos
5.
Inorg Chem ; 61(28): 10781-10791, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35785790

RESUMO

Gold nanoparticles (AuNPs) have found applications in biomedicine as diagnostic tools, but extensive research efforts have been also directed toward their development as more efficient drug delivery agents. The high specific surface area of AuNPs may provide dense loading of molecules like catechols (L-DOPA and dopamine) on nanosurfaces, enabling functionalization strategies for advancing conventional therapy and diagnostic approaches of neurodegenerative diseases. Despite numerous well-described procedures in the literature for preparation of different AuNPs, possible transformation and structural changes of surface functionalization agents have not been considered thoroughly. As a case in point, the catechols L-DOPA and dopamine were selected because of their susceptibility to oxidation, cyclization, and polymerization. To assess the fate of coating and functionalization agents during the preparation of AuNPs or interaction at the nano-bio interface, a combination of spectroscopy, light scattering, and microscopy techniques was used while structural information and reaction mechanism were obtained by NMR in combination with computational tools. The results revealed that the final form of catechol on the AuNP nanosurface depends on the molar ratio of Au used for AuNP preparation. A large molar excess of L-DOPA or dopamine is needed to prepare AuNPs funtionalized with fully reduced catechols. In the case of molar excess of Au, the oxidation of catechols to dopamine quinone and dopaquinone was promoted, and dopaquinone underwent intramolecular cyclization in which additional oxidation products, leukodopachrome, dopachrome, or its tautomer, were formed because of the larger intrinsic acidity of the more nucleophilic amino group in dopaquinone. MD simulations showed that, of the oxidation products, dopachrome had the highest affinity for binding to the AuNPs surface. The results highlight how a more versatile methodological approach, combining experimental and in silico techniques, allows more reliable characterization of binding events at the surface of AuNPs for possible applications in biomedicine.


Assuntos
Ouro , Nanopartículas Metálicas , Catecóis/química , Dopamina , Ouro/química , Levodopa , Nanopartículas Metálicas/química
6.
Chem Soc Rev ; 50(8): 4932-4973, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33710195

RESUMO

Antimicrobial resistance (AMR) is one of the greatest threats to human health that, by 2050, will lead to more deaths from bacterial infections than cancer. New antimicrobial agents, both broad-spectrum and selective, that do not induce AMR are urgently required. Antimicrobial peptides (AMPs) are a novel class of alternatives that possess potent activity against a wide range of Gram-negative and positive bacteria with little or no capacity to induce AMR. This has stimulated substantial chemical development of novel peptide-based antibiotics possessing improved therapeutic index. This review summarises recent synthetic efforts and their impact on analogue design as well as their various applications in AMP development. It includes modifications that have been reported to enhance antimicrobial activity including lipidation, glycosylation and multimerization through to the broad application of novel bio-orthogonal chemistry, as well as perspectives on the direction of future research. The subject area is primarily the development of next-generation antimicrobial agents through selective, rational chemical modification of AMPs. The review further serves as a guide toward the most promising directions in this field to stimulate broad scientific attention, and will lead to new, effective and selective solutions for the several biomedical challenges to which antimicrobial peptidomimetics are being applied.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Antibacterianos/química , Humanos , Estrutura Molecular , Proteínas Citotóxicas Formadoras de Poros/química
7.
Biophys J ; 120(20): 4501-4511, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34480924

RESUMO

The benefit of combining in-cell solid-state dynamic nuclear polarization (DNP) NMR and cryogenic temperatures is providing sufficient signal/noise and preservation of bacterial integrity via cryoprotection to enable in situ biophysical studies of antimicrobial peptides. The radical source required for DNP was delivered into cells by adding a nitroxide-tagged peptide based on the antimicrobial peptide maculatin 1.1 (Mac1). In this study, the structure, localization, and signal enhancement properties of a single (T-MacW) and double (T-T-MacW) TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin-labeled Mac1 analogs were determined within micelles or lipid vesicles. The solution NMR and circular dichroism results showed that the spin-labeled peptides adopted helical structures in contact with micelles. The peptides behaved as an isolated radical source in the presence of multilamellar vesicles, and the electron paramagnetic resonance (EPR) electron-electron distance for the doubly spin-labeled peptide was ∼1 nm. The strongest paramagnetic relaxation enhancement (PRE) was observed for the lipid NMR signals near the glycerol-carbonyl backbone and was stronger for the doubly spin-labeled peptide. Molecular dynamics simulation of the T-T-MacW radical source in phospholipid bilayers supported the EPR and PRE observations while providing further structural insights. Overall, the T-T-MacW peptide achieved better 13C and 15N signal NMR enhancements and 1H spin-lattice T1 relaxation than T-MacW.


Assuntos
Óxidos N-Cíclicos , Peptídeos , Fosfolipídeos , Marcadores de Spin
8.
Biochem Soc Trans ; 49(3): 1457-1465, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34156433

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative condition that involves the extracellular accumulation of amyloid plaques predominantly consisting of Aß peptide aggregates. The amyloid plaques and soluble oligomeric species of Aß are believed to be the major cause of synaptic dysfunction in AD brain and their cytotoxic mechanisms have been proposed to involve interactions with cell membranes. In this review, we discuss our solid-state nuclear magnetic resonance (ssNMR) studies of Aß interactions with model membranes.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Amiloide/metabolismo , Encéfalo/patologia , Humanos , Neurônios/metabolismo , Placa Amiloide/metabolismo , Ligação Proteica , Sinapses/metabolismo
9.
Amino Acids ; 53(5): 769-777, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33891157

RESUMO

Cationic antimicrobial peptides have been investigated for their potential use in combating infections by targeting the cell membrane of microbes. Their unique chemical structure has been investigated to understand their mode of action and optimize their dose-response by rationale design. One common feature among cationic AMPs is an amidated C-terminus that provides greater stability against in vivo degradation. This chemical modification also likely modulates the interaction with the cell membrane of bacteria yet few studies have been performed comparing the effect of the capping groups. We used maculatin 1.1 (Mac1) to assess the role of the capping groups in modulating the peptide bacterial efficiency, stability and interactions with lipid membranes. Circular dichroism results showed that C-terminus amidation maintains the structural stability of the peptide (α-helix) in contact with micelles. Dye leakage experiments revealed that amidation of the C-terminus resulted in higher membrane disruptive ability while bacteria and cell viability assays revealed that the amidated form displayed higher antibacterial ability and cytotoxicity compared to the acidic form of Mac1. Furthermore, 31P and 2H solid-state NMR showed that C-terminus amidation played a greater role in disturbance of the phospholipid headgroup but had little effect on the lipid tails. This study paves the way to better understand how membrane-active AMPs act in live bacteria.


Assuntos
Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Animais , Anuros , Membrana Celular/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Bicamadas Lipídicas/química , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
10.
Faraday Discuss ; 232(0): 399-418, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34558564

RESUMO

The impact of maculatin 1.1 (Mac1) on the mechanical properties of supported lipid membranes derived from exponential growth phase (EGP) and stationary growth phase (SGP) E. coli lipid extracts was analysed by surface plasmon resonance and atomic force microscopy. Each membrane was analysed by quantitative nanomechanical mapping to derive measurements of the modulus, adhesion and deformation in addition to bilayer height. Image analysis revealed the presence of two domains in the EGP membrane differing in height by 0.4 nm. Three distinct domains were observed in the SGP membrane corresponding to 4.2, 4.7 and 5.4 nm in height. Using surface plasmon resonance, Mac1 was observed to bind strongly to both membranes and then disrupt the membranes as evidenced by a sharp drop in baseline. Atomic force microscopy (AFM) topographic analysis revealed the formation of domains of different height and confirmed that membrane destruction was much faster for the SGP derived bilayer. Moreover, Mac1 selectively disrupted the domain with the lowest thickness, which may correspond to a liquid ordered domain. Overall, the results provide insight into the role of lipid domains in the response of bacteria to antimicrobial peptides.


Assuntos
Escherichia coli , Peptídeos , Antibacterianos/farmacologia , Bicamadas Lipídicas , Lipídeos , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA