Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Divers ; 27(6): 2555-2575, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36417095

RESUMO

Leishmaniasis includes a range of parasitic diseases caused by numerous types of the protozoan kinetoplastid parasite. Fungal and bacterial pathogens have led to infectious illnesses causing some main public health problem in current years. A series of dihydropyridine and tetrahydropyrimidine derivatives having fluoro, bromo, and nitro substituents at para-phenyl ring on C4 of dihydropyridine and tetrahydropyrimidine rings were synthesized. Then, anti-leishmanial and antimicrobial potencies of compounds were assessed. All compounds were synthesized via Hantzsch and Biginelli reactions. All derivatives were evaluated for their anti-leishmanial and antimicrobial activities. Moreover, docking and molecular dynamics simulation calculations of the compounds in PRT1 binding site were performed to report the results of anti-leishmanial and antimicrobial activities. Compounds 4a and 4b showed the highest anti-amastigote and anti-promastigote activities. Compound 4a revealed the highest antimicrobial activity against E. coli, P. aeruginosa, and C. albicans strains. In addition, compound 4c showed the highest activity against S. aureus. The fluoro, bromo, and nitro substituents in para-position of phenyl group at C4 of dihydropyridine and tetrahydropyrimidine moieties as well as the bulk and length of the chain linking to the ester moieties are essential for anti-leishmanial and anti-microbial activities of these derivatives. Low cytotoxicity was shown by most of derivatives against macrophages. The molecular docking studies were in agreement with in vitro assay. Moreover, hydrogen binds, RMSF, RMSD, and Rg, strongly showed the steady binding of 4a and 4b compounds in PRT1 active site.


Assuntos
Anti-Infecciosos , Leishmania , Nifedipino , Simulação de Acoplamento Molecular , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/química , Candida albicans
2.
Chem Biodivers ; 20(5): e202300054, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37026445

RESUMO

New series of triazole-tetrahydropyrimidinone(thione) hybrids (9a-g) were synthesized. FT-IR, 1 H-NMR, 13 C-NMR, elemental analysis and mass spectroscopic studies characterized the structures of the synthesized compounds. Then, the synthesized compounds were screened to determine the urease inhibitory activity. Methyl 4-(4-((1-(2-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (9c) exhibited the highest urease inhibitory activity (IC50 =25.02 µM) among the compounds which was almost similar to thiourea as standard (IC50 =22.32 µM). The docking study of the screened compounds demonstrated that these compounds fit well in the urease active site. Based on the docking study, compound 9c with the highest urease inhibitory activity showed chelates with both Ni2+ ions of the urease active site. Moreover, the molecular dynamic study of the most potent compounds showed that they created important interactions with the active site flap residues, His322, Cys321, and Met317.


Assuntos
Simulação de Dinâmica Molecular , Urease , Relação Estrutura-Atividade , Tionas/farmacologia , Triazóis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/química , Estrutura Molecular
3.
Arch Pharm (Weinheim) ; 356(9): e2300252, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37401193

RESUMO

Urease is a metalloenzyme including two Ni2+ ions, found in some plants, bacteria, fungi, microorganisms, invertebrate animals, and animal tissues. Urease acts as a significant virulence factor, mainly in catheter blockage and infective urolithiasis as well as in the pathogenesis of gastric infection. Therefore, studies on urease lead to novel synthetic inhibitors. In this review, the synthesis and antiurease activities of a collection of privileged synthetic heterocycles such as (thio)barbiturate, (thio)urea, dihydropyrimidine, and triazol derivatives were described and discussed according to structure-activity relationship findings in search of the best moieties and substituents that are answerable for encouraging the desired activity even more potent than the standard. It was found that linking substituted phenyl and benzyl rings to the heterocycles led to potent urease inhibitors.

4.
Arch Pharm (Weinheim) ; 355(10): e2200158, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35833485

RESUMO

The urease enzyme, a metalloenzyme having Ni2+ ions, is recognized in some bacteria, fungi, and plants. Particularly, it is vital to the progress of infections induced by pathogenic microbes, such as Proteus mirabilis and Helicobacter pylori. Herein, we reported the synthesis of a series of tetrahydropyrimidine derivatives and evaluated their antiurease activity. Finally, quantitative and qualitative analyses of the derivatives were performed via in silico studies. Urease inhibitory activity was determined as the reaction of H. pylori urease with different concentrations of compounds, and thiourea was used as a standard compound. Docking and dynamics methodologies were applied to study the interactions of the best compounds with the amino acids in the active site. All compounds showed good to excellent antiurease activity. The potent compounds were not cytotoxic against the HUVEC normal cell line. Based on the docking study, compound 4e with the highest urease inhibitory activity (IC50 = 6.81 ± 1.42 µM) showed chelates with both Ni2+ ions of the urease active site. Further, compound 4f displayed a very good inhibitory activity (IC50 = 8.45 ± 1.64 µM) in comparison to thiourea (IC50 = 22.03 ± 1.24 µM). The molecular docking and dynamics simulation results were correlated with the in vitro assay results. Moreover, the derivatives 4a-n followed Lipinski's rule-of-five and had drug-likeness properties.


Assuntos
Helicobacter pylori , Metaloproteínas , Aminoácidos , Inibidores Enzimáticos/química , Metaloproteínas/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tioureia/farmacologia , Urease
5.
Bioorg Med Chem ; 28(8): 115408, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32165076

RESUMO

This article reports for the first time the synthesis of some novel ß-lactam morpholino-1,3,5-triazine hybrids by a [2+2]-cycloaddition reaction of imines 7a-c, 9a-c and 11 with ketenes derived from substituted acetic acids. The reaction was totally diastereoselective, leading exclusively to the formation of cis-ß-lactams 8a-l, 10a-f and 12a-c. The synthesized compounds were tested for activity towards SW1116, MCF-7 and HepG2 cancer cell lines and non-cancerous HEK-293 cell line by MTT assay. None of the compounds exert an observable effect on HepG2, MCF-7 and HEK-293 cells, but compounds 7b, 8f, 8g, 8l, 10c, and 10e exhibited excellent growth inhibitory activity (IC50 < 5 µM) against SW 1116 cells, comparable to that of doxorubicin (IC50 = 6.9 µM). An evaluation of the antioxidant potential of each of the compounds, performed by diphenylpicrylhydrazyl (DPPH) assay, indicated that 7b, 9a, 9b and 9c have strong free radical scavenging activity. UV absorption titration studies reveal that 7b, 8l, 8g and 8f interact strongly with calf-thymus DNA (CT-DNA) in the order of 8l > 7b > 8f > 8g. Collectively, the in vitro capabilities of some of these morpholino-triazine imines and ß-lactams suggest possible applications to development of new antioxidants and DNA binding therapeutics.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Desenho de Fármacos , Triazinas/farmacologia , beta-Lactamas/farmacologia , Antineoplásicos/síntese química , Antioxidantes/síntese química , Linhagem Celular , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Triazinas/química , beta-Lactamas/síntese química
6.
Bioorg Chem ; 95: 103529, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31884139

RESUMO

A new series of N,N-dimethylbarbituric-pyridinium derivatives 7a-n was synthesized and evaluated as Helicobacter pylori urease inhibitors. All the synthesized compounds (IC50 = 10.37 ± 1.0-77.52 ± 2.7 µM) were more potent than standard inhibitor hydroxyurea against urease (IC50 = 100.00 ± 0.2 µM). Furthermore, comparison of IC50 values of the synthesized compounds with the second standard inhibitor thiourea (IC50 = 22.0 ± 0.03 µM) revealed that compounds 7a-b and 7f-h were more potent than thiourea. Molecular modeling study of the most potent compounds 7a, 7b, 7f, and 7g was also conducted. Additionally, the drug-likeness properties of the synthesized compounds, based on Lipinski rule and other filters, were evaluated.


Assuntos
Barbitúricos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Piridinas/química , Urease/antagonistas & inibidores , Barbitúricos/farmacologia , Disponibilidade Biológica , Simulação por Computador , Inibidores Enzimáticos/farmacocinética , Helicobacter pylori/enzimologia , Técnicas In Vitro , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Estrutura Molecular , Piridinas/farmacologia , Análise Espectral/métodos
7.
Bioorg Chem ; 102: 104091, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32717692

RESUMO

This study reports the synthesis and biological investigation of three series of novel monocyclic ß-lactam derivatives bearing a morpholine ring substituent on the nitrogen. The resulting ß-lactam adducts were synthesized via Staudinger's [2 + 2]-ketene-imine cycloaddition reaction. New synthesized products were fully characterized by spectral data and elemental analyses, and then evaluated for anti-inflammatory activity toward human inducible nitric oxide synthase (iNOS) and cytotoxicity toward HepG2 cell line. The compounds 3e, 3h, 3k, 5c, 5f, 6c, 6d and 6f showed higher activity with anti-inflammatory ratio values of 38, 62, 51, 72, 51, 35, 55 and 99, respectively, in comparison to the reference compound dexamethasone having an anti-inflammatory ratio value of 32. Hence, these compounds can be considered as potent iNOS inhibitors. They also exhibited IC50 values of 0.48 ± 0.04 mM, 0.51 ± 0.01 mM, 0.22 ± 0.02 mM, 0.12 ± 0.00 mM, 0.25 ± 0.05 mM, 0.82 ± 0.07 mM, 0.44 ± 0.04 mM and 0.60 ± 0.04 mM, respectively, in comparison with doxorubicin (IC50 < 0.01 mM) against HepG2 cells, biocompatibility and nontoxic behavior. In silico prediction of drug-likeness characteristic indicated that the compounds are compliant with the Lipinski and Veber rules. Molecular docking experiments showed a good correlation between the experimental activity and the calculated binding affinity to human inducible nitric oxide synthase, the enzymatic target for the anti-inflammatory response.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Morfolinas/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , beta-Lactamas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Morfolinas/síntese química , Morfolinas/química , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Relação Estrutura-Atividade , beta-Lactamas/química
8.
Mol Divers ; 24(2): 525-569, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31028558

RESUMO

Leishmania, one of the most important neglected tropical diseases, is endemic in several regions of the world and hence regarded as a serious threat to public health. Major difficulties with current chemotherapeutic agents raise issues such as toxicity, resistance, cost and other side effects. These issues necessitate development of potentially new chemical entities against diverse leishmanial species. Numerous natural and synthetic new antileishmanial molecules have been described for disease management. Careful inspection of scientific reports revealed that considerable amount of promising antileishmanial agents belonged to the nitrogen-containing heterocycles such as quinoline, triazole, pyrazole, imidazole, indole, pyrimidine, ß-carboline, quinoxaline, quinazoline and benzimidazole. In this regard, enormous chemical data provide the opportunity for systematic elucidation of structural requirements against different leishmanial species. Within this representation, insights into the current status of privileged N-heterocycles as antileishmanial agents with particular emphasis on structure activity relationships are reviewed.


Assuntos
Antiprotozoários , Compostos Heterocíclicos , Leishmaniose/tratamento farmacológico , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Humanos , Leishmania/efeitos dos fármacos
9.
Arch Pharm (Weinheim) ; 353(9): e2000023, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32596826

RESUMO

A new series of 1,2,3-triazole-(thio)barbituric acid hybrids 8a-n was designed and synthesized on the basis of potent pharmacophores with urease inhibitory activity. Therefore, these compounds were evaluated against Helicobacter pylori urease. The obtained result demonstrated that all the synthesized compounds, 8a-n, were more potent than the standard urease inhibitor, hydroxyurea. Moreover, among them, compounds 8a, 8c-e, 8g,h, and 8k,l exhibited higher urease inhibitory activities than the other standard inhibitor used: thiourea. Docking studies were performed with the synthesized compounds. Furthermore, molecular dynamic simulation of the most potent compounds, 8e and 8l, showed that these compounds interacted with the conserved residues Cys592 and His593, which belong to the active site flap and are essential for enzymatic activity. These interactions have two consequences: (a) blocking the movement of a flap at the entrance of the active site channel and (b) stabilizing the closed active site flap conformation, which significantly reduces the catalytic activity of urease. Calculation of the physicochemical and topological properties of the synthesized compounds 8a-n predicted that all these compounds can be orally active. The ADME prediction of compounds 8a-n was also performed.


Assuntos
Inibidores Enzimáticos/farmacologia , Tiobarbitúricos/farmacologia , Triazóis/farmacologia , Urease/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/enzimologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Tiobarbitúricos/síntese química , Tiobarbitúricos/química , Tioureia/farmacologia , Triazóis/síntese química , Triazóis/química
10.
Chem Biodivers ; 16(1): e1800410, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30341985

RESUMO

The salophen copper(II) complex was successfully used for the efficient synthesis of new 1,2,3-triazoles based on the naphthalene-1,4-dione scaffold. The reaction of 2-chloro-3-(prop-2-yn-1-yloxy)naphthalene-1,4-dione or 2,3-bis(prop-2-yn-1-yloxy)naphthalene-1,4-dione with aromatic azides in the presence of a low copper catalyst (loading 1 mol-%) afforded 2-chloro-3-[(1-phenyl-1H-1,2,3-triazol-4-yl)methoxy]naphthalene-1,4-dione or 2,3-bis[(1-phenyl-1H-1,2,3-triazol-4-yl)methoxy]naphthalene-1,4-dione, respectively. The advantages of these reactions are short reaction times, high-to-excellent reaction yields, operational simplicity, and mild experimental conditions. The new 1,2,3-triazoles obtained were screened for their in vitro antibacterial activities and were subjected to molecular docking studies.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Química Click , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Naftalenos/química , Salicilatos/química , Triazóis/síntese química , Antibacterianos/síntese química , Complexos de Coordenação/síntese química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Termodinâmica
11.
Chem Biodivers ; 16(11): e1900370, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31523926

RESUMO

A novel series of phthalimide-dithiocarbamate hybrids was synthesized and evaluated for in vitro inhibitory potentials against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The anti-cholinesterase results indicated that among the synthesized compounds, the compounds 7g and 7h showed the most potent anti-AChE and anti-BuChE activities, respectively. Molecular docking and dynamic studies of the compounds 7g and 7h, respectively, in the active site of AChE and BuChE revealed that these compounds as well interacted with studied cholinesterases. These compounds also possessed drug-like properties and were able to cross the BBB.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Simulação de Acoplamento Molecular , Ftalimidas/farmacologia , Tiocarbamatos/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Butirilcolinesterase/metabolismo , Electrophorus , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Cavalos , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Ftalimidas/química , Tiocarbamatos/química
12.
Chem Biodivers ; 15(4): e1700502, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29411517

RESUMO

A series of tetrahydropyrimidine derivatives (2a - 2l) were designed, synthesized, and screened for anti-HIV-1 properties based on the structures of HIV-1 gp41 binding site inhibitors, NB-2 and NB-64. A computational study was performed to predict the pharmacodynamics, pharmacokinetics, and drug-likeness features of the studied molecules. Docking studies revealed that the carboxylic acid group in the molecules forms salt bridges with either Lys574 or Arg579. Physiochemical properties (e.g., molecular weight, number of hydrogen bond donors, number of hydrogen bond acceptors, and number of rotatable bonds) of the synthesized compounds confirmed and exhibited that these compounds were within the range set by Lipinski's rule of five. Compounds 2e and 2k with 4-chlorophenyl substituent and 4-methylphenyl group at C(4) position of the tetrahydropyrimidine ring was the most potent one among the tested compounds. This suggests that these compounds may serve as leads for development of novel small-molecule HIV-1 inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , Ácidos Carboxílicos/farmacologia , Desenho de Fármacos , HIV-1/efeitos dos fármacos , Pirimidinas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
13.
Chem Biodivers ; 14(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28834275

RESUMO

The structural similarities between N1 substituted 1,4-dihydropyridines and the known gp41 inhibitors, NB-2 and NB-64, were considered in the current research for the design of some novel anti-HIV-1 agents. A series of novel 4-[4-arylpyridin-1(4H)-yl]benzoic acid derivatives were synthesized and after a comprehensive structural elucidation were screened for in vitro anti-HIV-1 activity. Most of the tested compounds displayed moderate to good inhibitory activity against HIV-1 growth and were evaluated for in vitro cytotoxic activity using XTT assay at the concentration of 100 µm. Among the tested compounds, 1c, 1d and 1e showed potent anti-HIV-1 activity against P24 expression at 100 µm with inhibition percentage of 84.00%, 76.42% and 80.50%, respectively. All the studied compounds possessed no significant cytotoxicity on MT-2 cell line. The binding modes of these compounds to gp41 binding site were determined through molecular docking study. Docking studies proved 1a as the most potent compound and binding maps exhibited that the activities might be attributed to the electrostatic and hydrophobic interactions and additional H-bonds with the gp41 binding site. The Lipinski's 'rule of five' and drug-likeness criteria were also calculated for the studied compounds. All derivatives obeyed the Lipinski's 'rule of five' and had drug-like features. The findings of this study suggest that novel 4-[4-arylpyridin-1(4H)-yl]benzoic acid might be a promising scaffold for the discovery and development of novel anti-HIV-1 agents.


Assuntos
Fármacos Anti-HIV/síntese química , Ácido Benzoico/química , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Ácido Benzoico/farmacologia , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Proteína do Núcleo p24 do HIV/genética , Proteína do Núcleo p24 do HIV/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/metabolismo , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
14.
J Pharm Pharm Sci ; 18(1): 1-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25877440

RESUMO

Years after the first report on 1,4-dihydropyridines (1,4-DHPs) and 1,2,3,4-tetrahydropyrimidines (1,2,3,4-THPMs) appeared, they are revisited as plausible therapeutic agents. This is mainly due to the convenient methods that exist for their synthesis and the diverse pharmacologic properties that these scaffolds present. 1,4-Dihydropyridines and 1,2,3,4-tetrahydropyrimidines are usually regarded as analogous in several aspects. They are both prepared in multi-component reactions using very similar starting materials and synthesis protocols. This leads to common structural features between 1,4-DHPs and 1,2,3,4-THPMs, as well several related biological effects. For example, they share many pharmacological features such as analgesic, anti-tumor, antioxidant, anti-inflammatory, antitubercular, antibacterial, cardiovascular and adrenoceptor blocking activities. Numerous reviews have been devoted to the chemistry and cardiovascular effects of these compounds. However, the lack of a comprehensive literature overview on the chemotherapeutic ability of these scaffolds is behind the present attempt to provide a detailed survey of 1,4-DHPs and 1,2,3,4-THPMs and their structural features as chemotherapeutic agents.


Assuntos
Di-Hidropiridinas/farmacologia , Pirimidinas/farmacologia , Animais , Di-Hidropiridinas/química , Humanos , Pirimidinas/química , Relação Estrutura-Atividade
15.
Daru ; 22(1): 2, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24393539

RESUMO

BACKGROUND AND PURPOSE OF THE STUDY: Acenaphtho derivatives have been reported as antitumor agents. Due to this fact and also with the aim of developing the chemistry of potentially bioactive heterocyclic compounds via efficient reactions, a facile procedure for the synthesis of 9-(alkylthio)-acenaphtho[1,2-e]-1,2,4-triazines via two step condensation of thiosemicarbazide and acenaphtylene-9,10-quinone to form acenaphtho[1,2-e]-1,2,4-triazine-9(8H)-thiones and subsequent reaction with benzyl chloride derivatives is reported. METHODS: 9-(alkylthio) acenaphtho[1,2-e]-1,2,4-triazines were synthesized via the reaction of acenaphtho-9,10-quinone with thiosemicarbazide, and then with the benzyl chloride derivatives. Cytotoxicity of some prepared compounds was assessed through MTT assay on three different human cancerous cell lines (HL-60, MCF7, and MOLT-4 cells). Molecular docking studies were performed via AutoDock4.2 software in order to confirm an apoptosis-inducing activity of acenaphtho scaffolds via the Bcl-2 protein. RESULTS: Excellent yields of the products, short reaction times and simple work-up are attractive features of this synthetic protocol. The evaluated compounds exhibited moderate to good cytotoxic activities. Docking results on the active site of B-cell lymphoma 2 (Bcl-2) supported the experimental biological data and agreed well with previous in silico data for commonly used anti-cancer drugs. Moreover; results were analyzed considering binding efficiency indices. CONCLUSIONS: The outcomes of the present study may be helpful in future targeting of Bcl-2 with the aim of developing apoptosis-inducing agents.

16.
RSC Adv ; 14(28): 19823-19879, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38903666

RESUMO

Stilbenes are a small family of polyphenolic secondary metabolites produced in a variety of closely related plant species. These compounds function as phytoalexins, aiding plant defense against phytopathogens and plants' adaptation to abiotic environmental factors. Structurally, some important phenolic compounds have a 14-carbon skeleton and usually have two isomeric forms, Z and E. Stilbenes contain two benzene rings linked by a molecule of ethanol or ethylene. Some derivatives of natural (poly)phenolic stilbenes such as resveratrol, pterostilbene, and combretastatin A-4 have shown various biological activities, such as anti-microbial, anti-cancer, and anti-inflammatory properties as well as protection against heart disease, Alzheimer's disease, and diabetes. Among stilbenes, resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds have been investigated for their bioactivity. This review focuses on the assessment of synthetic stilbene derivatives in terms of their biological activities and structure-activity relationship. The goal of this study is to consider the structural changes and different substitutions on phenyl rings that can improve the desired medicinal effects of stilbene-based compounds beyond the usual standards and subsequently discover biological activities by identifying effective alternatives of the evaluated compounds.

17.
Heliyon ; 10(16): e36408, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39247345

RESUMO

One of the multifactorial worldwide health syndromes is diabetes mellitus which is increasing at a disturbing rate. The inhibition of α-glucosidase, an enzyme that catalyzes starch hydrolysis in the intestine, is one helpful therapeutic approach for controlling hyperglycemia related to type-2 diabetes. To discover α-glucosidase inhibitors, some 2-hydrazolyl-4-thiazolidinone hybrids (3a-e) were synthesized from new one-pot reaction procedures. Next, their chemical structures were confirmed by 1H NMR, 13C NMR, and FT-IR spectra, and elemental analysis technique. Then, the α-glucosidase inhibitory activity of the titled compounds was evaluated. Among them, derivatives 3b and 3c revealed the highest activity against α-glucosidase compared to acarbose as a drug. Enzyme kinetic studies of the most active derivative (3b) indicated a competitive inhibition. Finally, molecular modeling studies were accomplished to describe vital interactions of the most potent compounds (3b and 3c) with the α-glucosidase enzyme.

18.
J Biomol Struct Dyn ; : 1-17, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37325813

RESUMO

The novel hybrids with 1,2,3-triazole and polyhydroquinoline scaffolds were successfully synthesized by multicomponent reaction of propargyloxybenzaldehyde, 1,3-cyclohexadione, ethylacetoacetate and ammonium acetate followed through click reaction in the presence of deep eutectic solvent ChCl/ZnCl2 as an efficient catalyst. Their anti-leishmanial activity was evaluated against amastigote and promastigote forms of L. tropica, L. major, and two different species of L. infantum. Furthermore, to determine the cytotoxicity of the hybrids, they were evaluated against the murine macrophage cell line J774.A1. Based on the results, three hybrids showed the highest antileishmanial activity. However, they revealed low cytotoxicity. Hybrid 6j was the most potent compound against both the forms of all leishmanial types, with IC50 = 13.5 and 11.9 µg/mL for L. major, 37.5 and 25 µg/mL for L. tropica, 17.5 and 20 µg/mL for L. infantum (MCAN/IR//96/LON49) and 35.5 and 30 µg/mL for L. infantum (MCAN/ES/98/LIM-877), respectively. Finally, molecular docking and molecular dynamics simulations were also performed to identify possible mechanism antileishmanial activity.Communicated by Ramaswamy H. Sarma.

19.
Front Chem ; 10: 936240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226120

RESUMO

Background: Alzheimer's disease (AD) is an advanced and irreversible degenerative disease of the brain, recognized as the key reason for dementia among elderly people. The disease is related to the reduced level of acetylcholine (ACh) in the brain that interferes with memory, learning, emotional, and behavior responses. Deficits in cholinergic neurotransmission are responsible for the creation and progression of numerous neurochemical and neurological illnesses such as AD. Aim: Herein, focusing on the fact that benzylpyridinium salts mimic the structure of donepezil hydrochlorideas a FDA-approved drug in the treatment of AD, their synthetic approaches and inhibitory activity against cholinesterases (ChEs) were discussed. Also, molecular docking results and structure-activity relationship (SAR) as the most significant concept in drug design and development were considered to introduce potential lead compounds. Key scientific concepts: AChE plays a chief role in the end of nerve impulse transmission at the cholinergic synapses. In this respect, the inhibition of AChE has been recognized as a key factor in the treatment of AD, Parkinson's disease, senile dementia, myasthenia gravis, and ataxia. A few drugs such as donepezil hydrochloride are prescribed for the improvement of cognitive dysfunction and memory loss caused by AD. Donepezil hydrochloride is a piperidine-containing compound, identified as a well-known member of the second generation of AChE inhibitors. It was established to treat AD when it was assumed that the disease is associated with a central cholinergic loss in the early 1980s. In this review, synthesis and anti-ChE activity of a library of benzylpyridinium salts were reported and discussed based on SAR studies looking for the most potent substituents and moieties, which are responsible for inducing the desired activity even more potent than donepezil. It was found that linking heterocyclic moieties to the benzylpyridinium salts leads to the potent ChE inhibitors. In this respect, this review focused on the recent reports on benzylpyridinium salts and addressed the structural features and SARs to get an in-depth understanding of the potential of this biologically improved scaffold in the drug discovery of AD.

20.
Acta Parasitol ; 67(1): 255-266, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34279776

RESUMO

PURPOSE: A number of tetrahydropyrimidines and their bioisosteric dihydropyridines bearing chloro substituent at various positions of phenyl ring in C4 of main scaffolds were designed, synthesized and evaluated for antileishmanial activity. METHODS: The antileishmanial activity of the synthesized compounds was evaluated against promastigote and amastigote forms. Moreover, molecular docking studies of the compounds in pteridine reductase 1 (PTR1) pocket were carried out to describe the results of biological experiments. RESULTS: The compounds exhibited moderate to good antileishmanial activity against promastigote and amastigote forms. Among the screened compounds, 1d and 2c were found as the most potent compounds against promastigote form with EC50 values of 15.5 and 10.5 µM, respectively. Compounds 2a and 2c were the most potent compounds against amastigote form with EC50 values of 5.4 and 2.2 µM, respectively. CONCLUSION: According to structure-activity relationship (SAR) studies, the chloro substituent in different positions of phenyl ring at C4 of 1,2,3,4-tetrahydropyrimidine (THPM) and 1,4-dihydropyridine (DHP) rings and also the length of the chain belonging to the ester groups could be important for antileishmanial activity of these compounds. Most of these compounds exhibited low cytotoxicity against macrophages. Compounds 1 h, 2a, 2b and 2c revealed higher activity than glucantime while all compounds showed lower activity toward amphotericine B. Docking studies showed that the synthesized compounds were fit well in the PTR1 pocket. Compounds 1 h and 2c indicated the highest score docking among screened compounds in PTR1 enzyme.


Assuntos
Antiprotozoários , Di-Hidropiridinas , Leishmania major , Antiprotozoários/farmacologia , Di-Hidropiridinas/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA