Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(7)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37510376

RESUMO

In recent years, the number of mole species with species status confirmed by genetic methods has been continuously increasing. Unfortunately, cytogenetic data are not yet available for all species. Here, for the first time, a GTG-banded karyotype of the small-toothed mole from Vietnam, Euroscaptor parvidens, a representative of the Eastern clade of the genus Euroscaptor, has been described. Through comparative analysis of available Euroscaptor (Euroscaptor parvidens, Euroscaptor klossi, and Euroscaptor malayana) and Oreoscaptor (Oreoscaptor mizura) karyotypes, we found cytogenetic signatures for each of the studied species. Zoo-FISH with sorted chromosomes of the Siberian mole (Talpa altaica) on chromosome sets of the small-toothed mole (E. parvidens), the small Japanese mole (Mogera imaizumii) from the closely related genus, and the Japanese shrew mole (Urotrichus talpoides) from the tribe Urotrichini made it possible to identify syntenic regions between these species. We propose a possible ancestral karyotype of the tribe and, based on it, traced the features of chromosomal rearrangements accompanying the divergence of moles. The low rates of chromosomal evolution within the species of the genus Talpa-T. altaica and T. europaea-and the high rates of karyotypic reshuffling within the Asian genera of the tribe were confirmed. The karyotype of the Japanese mountain mole O. mizura seems to be the most conserved among the Asian moles. The most frequently occurring types of chromosomal rearrangements in moles are the pericentric inversions and amplification of heterochromatin. The pericentric inversions on four pairs of autosomes are shared between the closely related genera Euroscaptor, Oreoscaptor, and Mogera, while many more apomorphic rearrangements have occurred in each lineage additionally. The highest rate of chromosomal changes, with five rearrangements occurring over approximately 7 million years, was recorded in the lineage of the small-toothed mole.


Assuntos
Toupeiras , Animais , Toupeiras/genética , Cariotipagem , Citogenética , Cariótipo , Musaranhos/genética
2.
Chromosome Res ; 19(4): 549-65, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21559983

RESUMO

Glires represent a eutherian clade consisting of rodents and lagomorphs (hares, rabbits, and pikas). Chromosome evolution of Glires is known to have variable rates in different groups: from slowly evolving lagomorphs and squirrels to extremely rapidly evolving muroids. Previous interordinal homology maps between slowly evolving Glires were based on comparison with humans. Here, we used sets of chromosome-specific probes from Tamias sibiricus (Sciuridae), Castor fiber (Castoridae) and humans to study karyotypes of six ground squirrels (genera Marmota and Spermophilus) and one tree squirrel (genus Sciurus), mountain hare (genus Lepus), and rabbit (genus Oryctolagus). These data supplemented with GTG banding comparisons allowed us to build comparative chromosome maps. Our data showed the absence of previously found squirrel associations HSA 1/8 and 2/17 in the Eurasian ground squirrels--sousliks and woodchucks, and disruptions of squirrel HSA 10/13 and HSA 8/4/8/12/22 syntenies in the four Spermophilus species studied here. We found that the karyotypes of Sciuridae and Leporidae are highly conserved and close to the Rodentia ancestral karyotype, while Castoridae chromosomes underwent many more changes. We suggest that Lagomorpha and Sciuridae (in contrast to all other rodent families) should be considered as core Glires lineages, characterized by cytogenetically conserved karyotypes which contain chromosomal elements inherent to karyotype of common Glires ancestor. Our data allowed us to further refine the putative ancestral karyotypes of Rodentia. We also describe here the putative ancestral karyotypes of Glires and lagomorphs.


Assuntos
Coloração Cromossômica , Evolução Molecular , Genoma/genética , Mamíferos/genética , Homologia de Sequência , Animais , Bandeamento Cromossômico , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Feminino , Humanos , Cariotipagem , Masculino , Coelhos
3.
Chromosome Res ; 18(4): 459-71, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20379801

RESUMO

The genus Microtus consists of 65 extant species, making it one of the rodentia genera with the highest number of species. The extreme karyotype diversification in Microtus has made them an ideal species group for comparative cytogenetics and cytotaxonomy. Conventional comparative cytogenetic studies in Microtus have been based mainly on chromosomal banding patterns; the number of Microtus species examined by molecular cytogenetics-cross-species chromosome painting-is limited. In this study, we used whole chromosome painting probes of the field vole Microtus agrestis to detect regions of homology in the karyotypes of eight Microtus species. For almost all investigated species, species-specific associations of conserved chromosomal segments were revealed. Analysis of data obtained here and previously published data allowed us to propose that the ancestral Microtus species had a 2n = 54 karyotype, including two associations of field vole chromosomal segments (MAG 1/17 and 2/8). Further mapping of the chromosome rearrangements onto a molecular phylogenetic tree allows the reconstruction of a karyotype evolution pathway in the Microtus genus.


Assuntos
Arvicolinae/genética , Evolução Biológica , Cromossomos , Animais , Coloração Cromossômica , Citogenética , Evolução Molecular , Cariotipagem , Masculino , Filogenia
4.
Chromosome Res ; 16(1): 129-43, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18293108

RESUMO

Canid species (dogs and foxes) have highly rearranged karyotypes and thus represent a challenge for conventional comparative cytogenetic studies. Among them, the domestic dog is one of the best-mapped species in mammals, constituting an ideal reference genome for comparative genomic study. Here we report the results of genome-wide comparative mapping of dog chromosome-specific probes onto chromosomes of the dhole, fennec fox, and gray fox, as well as the mapping of red fox chromosome-specific probes onto chromosomes of the corsac fox. We also present an integrated comparative chromosome map between the species studied here and all canids studied previously. The integrated map demonstrates an extensive conservation of whole chromosome arms across different canid species. In addition, we have generated a comprehensive genome phylogeny for the Canidae on the basis of the chromosome rearrangements revealed by comparative painting. This genome phylogeny has provided new insights into the karyotypic relationships among the canids. Our results, together with published data, allow the formulation of a likely Canidae ancestral karyotype (CAK, 2n = 82), and reveal that at least 6-24 chromosomal fission/fusion events are needed to convert the CAK karyotype to that of the modern canids.


Assuntos
Coloração Cromossômica , Cães/genética , Raposas/genética , Genômica , Filogenia , Animais , Genoma , Humanos , Sondas Moleculares/genética
5.
Chromosome Res ; 16(2): 261-74, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18266061

RESUMO

The number of rodent species examined by modern comparative genomic approaches, particularly chromosome painting, is limited. The use of human whole-chromosome painting probes to detect regions of homology in the karyotypes of the rodent index species, the mouse and rat, has been hindered by the highly rearranged nature of their genomes. In contrast, recent studies have demonstrated that non-murid rodents display more conserved genomes, underscoring their suitability for comparative genomic and higher-order systematic studies. Here we provide the first comparative chromosome maps between human and representative rodents of three major rodent lineages Castoridae, Pedetidae and Dipodidae. A comprehensive analysis of these data and those published for Sciuridae show (1) that Castoridae, Pedetidae and Dipodidae form a monophyletic group, and (2) that the European beaver Castor fiber (Castoridae) and the birch mouse Sicista betulina (Dipodidae) are sister species to the exclusion of the springhare Pedetes capensis (Pedetidae), thus resolving an enduring trifurcation in rodent higher-level systematics. Our results together with published data on the Sciuridae allow the formulation of a putative rodent ancestral karyotype (2n = 50) that is thought to comprise the following 26 human chromosomal segments and/or segmental associations: HSA1pq, 1q/10p, 2pq, 2q, 3a, 3b/19p, 3c/21, 4b, 5, 6, 7a, 7b/16p, 8p/4a/8p, 8q, 9/11, 10q, 12a/22a, 12b/22b, 13, 14/15, 16q/19q, 17, 18, 20, X and Y. These findings provide insights into the likely composition of the ancestral rodent karyotype and an improved understanding of placental genome evolution.


Assuntos
Genoma/fisiologia , Hibridização in Situ Fluorescente/métodos , Roedores/genética , Animais , Bandeamento Cromossômico , Sondas de DNA , Feminino , Humanos , Masculino , Camundongos , Filogenia , Coelhos , Ratos , Sciuridae/genética
6.
Chromosome Res ; 15(7): 891-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17924201

RESUMO

Using cross-species chromosome painting, we have carried out a comprehensive comparison of the karyotypes of two Ellobius species with unusual sex determination systems: the Transcaucasian mole vole, Ellobius lutescens (2n = 17, X in both sexes), and the northern mole vole, Ellobius talpinus (2n = 54, XX in both sexes). Both Ellobius species have highly rearranged karyotypes. The chromosomal paints from the field vole (Microtus agrestis) detected, in total, 34 and 32 homologous autosomal regions in E. lutescens and E. talpinus karyotypes, respectively. No difference in hybridization pattern of the X paint (as well as Y paint) probes on male and female chromosomes was discovered. The set of golden hamster (Mesocricetus auratus) chromosomal painting probes revealed 44 and 43 homologous autosomal regions in E. lutescens and E. talpinus karyotypes, respectively. A comparative chromosome map was established based on the results of cross-species chromosome painting and a hypothetical ancestral Ellobius karyotype was reconstructed. A considerable number of rearrangements were detected; 31 and 7 fusion/fission rearrangements differentiated the karyotypes of E. lutescens and E. talpinus from the ancestral Ellobius karyotype. It seems that inversions have played a minor role in the genome evolution of these Ellobius species.


Assuntos
Arvicolinae/genética , Coloração Cromossômica/métodos , Cromossomos de Mamíferos/genética , Evolução Molecular , Animais , Arvicolinae/classificação , Cricetinae , Análise Citogenética , Hibridização in Situ Fluorescente
7.
Chromosome Res ; 15(4): 447-56, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17497247

RESUMO

Cross-species chromosome painting has become the mainstay of comparative cytogenetic and chromosome evolution studies. Here we have made a set of chromosomal painting probes for the field vole (Microtus agrestis) by DOP-PCR amplification of flow-sorted chromosomes. Together with painting probes of golden hamster (Mesocricetus auratus) and mouse (Mus musculus), the field vole probes have been hybridized onto the metaphases of the tundra vole (Microtus oeconomus). A comparative chromosome map between these two voles, golden hamster and mouse has been established based on the results of cross-species chromosome painting and G-banding comparisons. The sets of paints from the field vole, golden hamster and mouse identified a total of 27, 40 and 47 homologous autosomal regions, respectively, in the genome of tundra vole; 16, 41 and 51 fusion/fission rearrangements differentiate the karyotype of the tundra vole from the karyotypes of the field vole, golden hamster and mouse, respectively.


Assuntos
Arvicolinae/genética , Cromossomos/genética , Animais , Arvicolinae/classificação , Coloração Cromossômica , Cricetinae , Evolução Molecular , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Mesocricetus/genética , Camundongos , Especificidade da Espécie
8.
Chromosome Res ; 15(3): 283-97, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17333534

RESUMO

The evolutionary success of rodents of the superfamily Muroidea makes this taxon the most interesting for evolution studies, including study at the chromosomal level. Chromosome-specific painting probes from the Chinese hamster and the Syrian (golden) hamster were used to delimit homologous chromosomal segments among 15 hamster species from eight genera: Allocricetulus, Calomyscus, Cricetulus, Cricetus, Mesocricetus, Peromyscus, Phodopus and Tscherskia (Cricetidae, Muroidea, Rodentia). Based on results of chromosome painting and G-banding, comparative maps between 20 rodent species have been established. The integrated maps demonstrate a high level of karyotype conservation among species in the Cricetus group (Cricetus, Cricetulus, Allocricetulus) with Tscherskia as its sister group. Species within the genera Mesocricetus and Phodopus also show a high degree of chromosomal conservation. Our results substantiate many of the conclusions suggested by other data and strengthen the topology of the Muroidea phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. The derivation of the muroids karyotypes from the putative ancestral state involved centric fusions, fissions, addition of heterochromatic arms and a great number of inversions. Our results provide further insights into the karyotype relationships of all species investigated.


Assuntos
Análise Citogenética/métodos , Filogenia , Animais , Bandeamento Cromossômico , Mapeamento Cromossômico , Coloração Cromossômica , Cricetinae , Cariotipagem , Mutagênese
9.
Mamm Genome ; 17(12): 1183-92, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17143584

RESUMO

The laboratory mouse (Mus musculus, 2n = 40), the Chinese hamster (Cricetulus griseus, 2n = 22), and the golden (Syrian) hamster (Mesocricetus auratus, 2n = 44) are common laboratory animals, extensively used in biomedical research. In contrast with the mouse genome, which was sequenced and well characterized, the hamster species has been set aside. We constructed a chromosome paint set for the golden hamster, which for the first time allowed us to perform multidirectional chromosome painting between the golden hamster and the mouse and between the two species of hamster. From these data we constructed a detailed comparative chromosome map of the laboratory mouse and the two hamster species. The golden hamster painting probes revealed 25 autosomal segments in the Chinese hamster and 43 in the mouse. Using the Chinese hamster probes, 23 conserved segments were found in the golden hamster karyotype. The mouse probes revealed 42 conserved autosomal segments in the golden hamster karyotype. The two largest chromosomes of the Chinese hamster (1 and 2) are homologous to seven and five chromosomes of the golden hamster, respectively. The golden hamster karyotype can be transformed into the Chinese hamster karyotype by 15 fusions and 3 fissions. Previous reconstructions of the ancestral murid karyotype proposed diploid numbers from 2n = 52 to 2n = 54. By integrating the new multidirectional chromosome painting data presented here with previous comparative genomics data, we can propose that syntenies to mouse Chrs 6 and 16 were both present and to hypothesize a diploid number of 2n = 48 for the ancestral Murinae/Cricetinae karyotype.


Assuntos
Coloração Cromossômica , Cromossomos de Mamíferos/genética , Cricetulus/genética , Mesocricetus/genética , Animais , Células Cultivadas , Cricetinae , Sondas de DNA , Genoma , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Camundongos , Mapeamento Físico do Cromossomo
10.
Chromosome Res ; 14(3): 283-96, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16628499

RESUMO

To better understand the evolution of genome organization of eutherian mammals, comparative maps based on chromosome painting have been constructed between human and representative species of three eutherian orders: Xenarthra, Pholidota, and Eulipotyphla, as well as between representative species of the Carnivora and Pholidota. These maps demonstrate the conservation of such syntenic segment associations as HSA3/21, 4/8, 7/16, 12/22, 14/15 and 16/19 in Eulipotyphla, Pholidota and Xenarthra and thus further consolidate the notion that they form part of the ancestral karyotype of the eutherian mammals. Our study has revealed many potential ancestral syntenic associations of human chromosomal segments that serve to link the families as well as orders within the major superordinial eutherian clades defined by molecular markers. The HSA2/8 and 7/10 associations could be the cytogenetic signatures that unite the Xenarthrans, while the HSA1/19p could be a putative signature that links the Afrotheria and Xenarthra. But caution is required in the interpretation of apparently shared syntenic associations as detailed analyses also show examples of apparent convergent evolution that differ in breakpoints and extent of the involved segments.


Assuntos
Coloração Cromossômica , Genoma , Ouriços/genética , Mamíferos/genética , Xenarthra/genética , Animais , Cromossomos de Mamíferos , Análise Citogenética , Evolução Molecular , Feminino , Genoma Humano , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Mamíferos/classificação , Especificidade da Espécie , Sintenia , Xenarthra/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA