Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Neural Comput ; 36(6): 1041-1083, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38669693

RESUMO

We consider a model of basic inner retinal connectivity where bipolar and amacrine cells interconnect and both cell types project onto ganglion cells, modulating their response output to the brain visual areas. We derive an analytical formula for the spatiotemporal response of retinal ganglion cells to stimuli, taking into account the effects of amacrine cells inhibition. This analysis reveals two important functional parameters of the network: (1) the intensity of the interactions between bipolar and amacrine cells and (2) the characteristic timescale of these responses. Both parameters have a profound combined impact on the spatiotemporal features of retinal ganglion cells' responses to light. The validity of the model is confirmed by faithfully reproducing pharmacogenetic experimental results obtained by stimulating excitatory DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) expressed on ganglion cells and amacrine cells' subclasses, thereby modifying the inner retinal network activity to visual stimuli in a complex, entangled manner. Our mathematical model allows us to explore and decipher these complex effects in a manner that would not be feasible experimentally and provides novel insights in retinal dynamics.


Assuntos
Retina , Células Ganglionares da Retina , Células Ganglionares da Retina/fisiologia , Retina/fisiologia , Animais , Modelos Neurológicos , Células Amácrinas/fisiologia , Simulação por Computador , Humanos , Vias Visuais/fisiologia , Estimulação Luminosa/métodos , Rede Nervosa/fisiologia , Campos Visuais/fisiologia , Células Bipolares da Retina/fisiologia
2.
J Cell Mol Med ; 27(3): 435-445, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36644817

RESUMO

Microglia are the primary resident immune cells in the retina. They regulate neuronal survival and synaptic pruning making them essential for normal development. Following injury, they mediate adaptive responses and under pathological conditions they can trigger neurodegeneration exacerbating the effect of a disease. Retinal organoids derived from human induced pluripotent stem cells (hiPSCs) are increasingly being used for a range of applications, including disease modelling, development of new therapies and in the study of retinogenesis. Despite many similarities to the retinas developed in vivo, they lack some key physiological features, including immune cells. We engineered an hiPSC co-culture system containing retinal organoids and microglia-like (iMG) cells and tested their retinal invasion capacity and function. We incorporated iMG into retinal organoids at 13 weeks and tested their effect on function and development at 15 and 22 weeks of differentiation. Our key findings showed that iMG cells were able to respond to endotoxin challenge in monocultures and when co-cultured with the organoids. We show that retinal organoids developed normally and retained their ability to generate spiking activity in response to light. Thus, this new co-culture immunocompetent in vitro retinal model provides a platform with greater relevance to the in vivo human retina.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Microglia , Retina , Organoides , Diferenciação Celular
3.
J Neurophysiol ; 127(5): 1334-1347, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235437

RESUMO

Computing the spike-triggered average (STA) is a simple method to estimate linear receptive fields (RFs) in sensory neurons. For random, uncorrelated stimuli, the STA provides an unbiased RF estimate, but in practice, white noise at high resolution is not an optimal stimulus choice as it usually evokes only weak responses. Therefore, for a visual stimulus, images of randomly modulated blocks of pixels are often used. This solution naturally limits the resolution at which an RF can be measured. Here, we present a simple super-resolution technique that can overcome these limitations. We define a novel stimulus type, the shifted white noise (SWN), by introducing random spatial shifts in the usual stimulus to increase the resolution of the measurements. In simulated data, we show that the average error using the SWN was 1.7 times smaller than when using the classical stimulus, with successful mapping of 2.3 times more neurons, covering a broader range of RF sizes. Moreover, successful RF mapping was achieved with brief recordings of light responses, lasting only about 1 min of activity, which is more than 10 times more efficient than the classical white noise stimulus. In recordings from mouse retinal ganglion cells with large scale multielectrode arrays, we successfully mapped 21 times more RFs than when using the traditional white noise stimuli. In summary, randomly shifting the usual white noise stimulus significantly improves RFs estimation, and requires only short recordings.NEW & NOTEWORTHY We present a novel approach to measure receptive fields in large and heterogeneous populations of sensory neurons recorded with large-scale, high-density multielectrode arrays. Our approach leverages super-resolution principles to improve the yield of the spike-triggered average method. By simply designing a new stimulus, we provide experimentalists with a new and fast technique to simultaneously detect more receptive fields at higher resolution in population of hundreds to thousands of neurons.


Assuntos
Células Ganglionares da Retina , Animais , Camundongos , Estimulação Luminosa , Células Ganglionares da Retina/fisiologia
4.
Stem Cells ; 39(7): 882-896, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33657251

RESUMO

Retinal dystrophies often lead to blindness. Developing therapeutic interventions to restore vision is therefore of paramount importance. Here we demonstrate the ability of pluripotent stem cell-derived cone precursors to engraft and restore light responses in the Pde6brd1 mouse, an end-stage photoreceptor degeneration model. Our data show that up to 1.5% of precursors integrate into the host retina, differentiate into cones, and engraft in close apposition to the host bipolar cells. Half of the transplanted mice exhibited visual behavior and of these 33% showed binocular light sensitivity. The majority of retinal ganglion cells exhibited contrast-sensitive ON, OFF or ON-OFF light responses and even motion sensitivity; however, quite a few exhibited unusual responses (eg, light-induced suppression), presumably reflecting remodeling of the neural retina. Our data indicate that despite relatively low engraftment yield, pluripotent stem cell-derived cone precursors can elicit light responsiveness even at advanced degeneration stages. Further work is needed to improve engraftment yield and counteract retinal remodeling to achieve useful clinical applications.


Assuntos
Células-Tronco Pluripotentes , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana , Transplante de Células-Tronco , Animais , Camundongos , Células-Tronco Pluripotentes/transplante , Degeneração Retiniana/terapia , Células Ganglionares da Retina/patologia
5.
Stem Cells ; 38(2): 195-201, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31721366

RESUMO

Induced pluripotent stem cell (iPSC)-derived retinal organoids provide a platform to study human retinogenesis, disease modeling, and compound screening. Although retinal organoids may represent tissue structures with greater physiological relevance to the in vivo human retina, their generation is not without limitations. Various protocols have been developed to enable development of organoids with all major retinal cell types; however, variability across iPSC lines is often reported. Modulating signaling pathways important for eye formation, such as those involving bone morphogenetic protein 4 (BMP4) and insulin-like growth factor 1 (IGF1), is a common approach used for the generation of retinal tissue in vitro. We used three human iPSC lines to generate retinal organoids by activating either BMP4 or IGF1 signaling and assessed differentiation efficiency by monitoring morphological changes, gene and protein expression, and function. Our results showed that the ability of iPSC to give rise to retinal organoids in response to IGF1 and BMP4 activation was line- and method-dependent. This demonstrates that careful consideration is needed when choosing a differentiation approach, which would also depend on overall project aims.

6.
Stem Cells ; 37(5): 609-622, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30681766

RESUMO

Death of photoreceptors is a common cause of age-related and inherited retinal dystrophies, and thus their replenishment from renewable stem cell sources is a highly desirable therapeutic goal. Human pluripotent stem cells provide a useful cell source in view of their limitless self-renewal capacity and potential to not only differentiate into cells of the retina but also self-organize into tissue with structure akin to the human retina as part of three-dimensional retinal organoids. Photoreceptor precursors have been isolated from differentiating human pluripotent stem cells through application of cell surface markers or fluorescent reporter approaches and shown to have a similar transcriptome to fetal photoreceptors. In this study, we investigated the transcriptional profile of CRX-expressing photoreceptor precursors derived from human pluripotent stem cells and their engraftment capacity in an animal model of retinitis pigmentosa (Pde6brd1), which is characterized by rapid photoreceptor degeneration. Single cell RNA-Seq analysis revealed the presence of a dominant cell cluster comprising 72% of the cells, which displayed the hallmarks of early cone photoreceptor expression. When transplanted subretinally into the Pde6brd1 mice, the CRX+ cells settled next to the inner nuclear layer and made connections with the inner neurons of the host retina, and approximately one-third of them expressed the pan cone marker, Arrestin 3, indicating further maturation upon integration into the host retina. Together, our data provide valuable molecular insights into the transcriptional profile of human pluripotent stem cells-derived CRX+ photoreceptor precursors and indicate their usefulness as a source of transplantable cone photoreceptors. Stem Cells 2019;37:609-622.


Assuntos
Diferenciação Celular/genética , Retina/crescimento & desenvolvimento , Células Fotorreceptoras Retinianas Cones/transplante , Degeneração Retiniana/terapia , Animais , Linhagem da Célula/genética , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Organoides/transplante , Células-Tronco Pluripotentes/transplante , Células Fotorreceptoras Retinianas Cones/citologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/transplante , Transcriptoma/genética
7.
Stem Cells ; 36(10): 1535-1551, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30004612

RESUMO

The availability of in vitro models of the human retina in which to perform pharmacological and toxicological studies is an urgent and unmet need. An essential step for developing in vitro models of human retina is the ability to generate laminated, physiologically functional, and light-responsive retinal organoids from renewable and patient specific sources. We investigated five different human-induced pluripotent stem cell (iPSC) lines and showed a significant variability in their efficiency to generate retinal organoids. Despite this variability, by month 5 of differentiation, all iPSC-derived retinal organoids were able to generate light responses, albeit immature, comparable to the earliest light responses recorded from the neonatal mouse retina, close to the period of eye opening. All iPSC-derived retinal organoids exhibited at this time a well-formed outer nuclear like layer containing photoreceptors with inner segments, connecting cilium, and outer like segments. The differentiation process was highly dependent on seeding cell density and nutrient availability determined by factorial experimental design. We adopted the differentiation protocol to a multiwell plate format, which enhanced generation of retinal organoids with retinal-pigmented epithelium (RPE) and improved ganglion cell development and the response to physiological stimuli. We tested the response of iPSC-derived retinal organoids to Moxifloxacin and showed that similarly to in vivo adult mouse retina, the primary affected cell types were photoreceptors. Together our data indicate that light responsive retinal organoids derived from carefully selected and differentiation efficient iPSC lines can be generated at the scale needed for pharmacology and drug screening purposes. Stem Cells 2018;36:1535-1551.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Nutrientes/genética , Organoides/metabolismo , Retina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular , Feminino , Humanos , Masculino , Camundongos , Organoides/citologia , Retina/citologia
8.
Stem Cells ; 33(8): 2416-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25827910

RESUMO

We and others have previously demonstrated that retinal cells can be derived from human embryonic stem cells (hESCs) and induced pluripotent stem cells under defined culture conditions. While both cell types can give rise to retinal derivatives in the absence of inductive cues, this requires extended culture periods and gives lower overall yield. Further understanding of this innate differentiation ability, the identification of key factors that drive the differentiation process, and the development of clinically compatible culture conditions to reproducibly generate functional neural retina is an important goal for clinical cell based therapies. We now report that insulin-like growth factor 1 (IGF-1) can orchestrate the formation of three-dimensional ocular-like structures from hESCs which, in addition to retinal pigmented epithelium and neural retina, also contain primitive lens and corneal-like structures. Inhibition of IGF-1 receptor signaling significantly reduces the formation of optic vesicle and optic cups, while exogenous IGF-1 treatment enhances the formation of correctly laminated retinal tissue composed of multiple retinal phenotypes that is reminiscent of the developing vertebrate retina. Most importantly, hESC-derived photoreceptors exhibit advanced maturation features such as the presence of primitive rod- and cone-like photoreceptor inner and outer segments and phototransduction-related functional responses as early as 6.5 weeks of differentiation, making these derivatives promising candidates for cell replacement studies and in vitro disease modeling.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias Humanas/citologia , Humanos , Epitélio Pigmentado da Retina/citologia
9.
Nano Lett ; 14(11): 6685-92, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25350365

RESUMO

We report the development of a semiconductor nanorod-carbon nanotube based platform for wire-free, light induced retina stimulation. A plasma polymerized acrylic acid midlayer was used to achieve covalent conjugation of semiconductor nanorods directly onto neuro-adhesive, three-dimensional carbon nanotube surfaces. Photocurrent, photovoltage, and fluorescence lifetime measurements validate efficient charge transfer between the nanorods and the carbon nanotube films. Successful stimulation of a light-insensitive chick retina suggests the potential use of this novel platform in future artificial retina applications.


Assuntos
Materiais Biomiméticos/química , Nanotubos de Carbono/química , Nanotubos/química , Próteses Neurais , Retina/fisiologia , Semicondutores , Acrilatos/química , Animais , Biomimética , Embrião de Galinha , Luz , Nanotubos/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Polimerização
10.
J Physiol ; 592(7): 1545-63, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24366261

RESUMO

The immature retina generates spontaneous waves of spiking activity that sweep across the ganglion cell layer during a limited period of development before the onset of visual experience. The spatiotemporal patterns encoded in the waves are believed to be instructive for the wiring of functional connections throughout the visual system. However, the ontogeny of retinal waves is still poorly documented as a result of the relatively low resolution of conventional recording techniques. Here, we characterize the spatiotemporal features of mouse retinal waves from birth until eye opening in unprecedented detail using a large-scale, dense, 4096-channel multielectrode array that allowed us to record from the entire neonatal retina at near cellular resolution. We found that early cholinergic waves propagate with random trajectories over large areas with low ganglion cell recruitment. They become slower, smaller and denser when GABAA signalling matures, as occurs beyond postnatal day (P) 7. Glutamatergic influences dominate from P10, coinciding with profound changes in activity dynamics. At this time, waves cease to be random and begin to show repetitive trajectories confined to a few localized hotspots. These hotspots gradually tile the retina with time, and disappear after eye opening. Our observations demonstrate that retinal waves undergo major spatiotemporal changes during ontogeny. Our results support the hypotheses that cholinergic waves guide the refinement of retinal targets and that glutamatergic waves may also support the wiring of retinal receptive fields.


Assuntos
Neurônios Colinérgicos/fisiologia , Neurônios GABAérgicos/fisiologia , Transdução de Sinal Luminoso , Retina/fisiologia , Neurônios Retinianos/fisiologia , Potenciais de Ação , Fatores Etários , Animais , Animais Recém-Nascidos , Neurônios Colinérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Endogâmicos C57BL , Receptores de GABA-A/metabolismo , Retina/crescimento & desenvolvimento , Retina/metabolismo , Neurônios Retinianos/metabolismo , Fatores de Tempo , Visão Ocular
11.
Vis Neurosci ; 31(4-5): 317-32, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24847731

RESUMO

Blindness represents an increasing global problem with significant social and economic impact upon affected patients and society as a whole. In Europe, approximately one in 30 individuals experience sight loss and 75% of those are unemployed, a social burden which is very likely to increase as the population of Europe ages. Diseases affecting the retina account for approximately 26% of blindness globally and 70% of blindness in the United Kingdom. To date, there are no treatments to restore lost retinal cells and improve visual function, highlighting an urgent need for new therapeutic approaches. A pioneering breakthrough has demonstrated the ability to generate synthetic retina from pluripotent stem cells under laboratory conditions, a finding with immense relevance for basic research, in vitro disease modeling, drug discovery, and cell replacement therapies. This review summarizes the current achievements in pluripotent stem cell differentiation toward retinal cells and highlights the steps that need to be completed in order to generate human synthetic retinae with high efficiency and reproducibly from patient-specific pluripotent stem cells.


Assuntos
Cegueira/patologia , Cegueira/terapia , Neurônios/fisiologia , Células-Tronco Pluripotentes/fisiologia , Retina/citologia , Animais , Diferenciação Celular , Humanos
12.
Stem Cells ; 30(4): 673-86, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22267304

RESUMO

Recent successes in the stem cell field have identified some of the key chemical and biological cues which drive photoreceptor derivation from human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC); however, the efficiency of this process is variable. We have designed a three-step photoreceptor differentiation protocol combining previously published methods that direct the differentiation of hESC and hiPSC toward a retinal lineage, which we further modified with additional supplements selected on the basis of reports from the eye field and retinal development. We report that hESC and hiPSC differentiating under our regimen over a 60 day period sequentially acquire markers associated with neural, retinal field, retinal pigmented epithelium and photoreceptor cells, including mature photoreceptor markers OPN1SW and RHODOPSIN with a higher efficiency than previously reported. In addition, we report the ability of hESC and hiPSC cultures to generate neural and retinal phenotypes under minimal culture conditions, which may be linked to their ability to endogenously upregulate the expression of a range of factors important for retinal cell type specification. However, cultures that were differentiated with full supplementation under our photoreceptor-induction regimen achieve this within a significantly shorter time frame and show a substantial increase in the expression of photoreceptor-specific markers in comparison to cultures differentiated under minimal conditions. Interestingly, cultures supplemented only with B27 and/or N2 displayed comparable differentiation efficiency to those under full supplementation, indicating a key role for B27 and N2 during the differentiation process. Furthermore, our data highlight an important role for Dkk1 and Noggin in enhancing the differentiation of hESC and hiPSC toward retinal progenitor cells and photoreceptor precursors during the early stages of differentiation, while suggesting that further maturation of these cells into photoreceptors may not require additional factors and can ensue under minimal culture conditions.


Assuntos
Diferenciação Celular , Células Fotorreceptoras de Vertebrados/citologia , Células-Tronco Pluripotentes/citologia , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Corpos Embrioides/citologia , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mitógenos/farmacologia , Fenótipo , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
13.
Open Biol ; 13(4): 220217, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015288

RESUMO

Individual retinal cell types exhibit semi-regular spatial patterns called retinal mosaics. Retinal ganglion cells (RGCs) and starburst amacrine cells (SACs) are known to exhibit such layouts. Mechanisms responsible for the formation of mosaics are not well understood but follow three main principles: (i) homotypic cells prevent nearby cells from adopting the same type, (ii) cell tangential migration and (iii) cell death. Alongside experiments in mouse, we use BioDynaMo, an agent-based simulation framework, to build a detailed and mechanistic model of mosaic formation. We investigate the implications of the three theories for RGC's mosaic formation. We report that the cell migration mechanism yields the most regular mosaics. In addition, we propose that low-density RGC type mosaics exhibit on average low regularities, and thus we question the relevance of regular spacing as a criterion for a group of RGCs to form a RGC type. We investigate SAC mosaics formation and interactions between the ganglion cell layer (GCL) and inner nuclear layer (INL) populations. We propose that homotypic interactions between the GCL and INL populations during mosaics creation are required to reproduce the observed SAC mosaics' characteristics. This suggests that the GCL and INL populations of SACs might not be independent during retinal development.


Assuntos
Células Amácrinas , Células Ganglionares da Retina , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Células Amácrinas/metabolismo , Retina , Software , Simulação por Computador
14.
iScience ; 26(7): 107237, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485345

RESUMO

Cells in the human retina must rapidly adapt to constantly changing visual stimuli. This fast adaptation to varying levels and wavelengths of light helps to regulate circadian rhythms and allows for adaptation to high levels of illumination, thereby enabling the rest of the visual system to remain responsive. It has been shown that retinal microRNA (miRNA) molecules play a key role in regulating these processes. However, despite extensive research using various model organisms, light-regulated miRNAs in human retinal cells remain unknown. Here, we aim to characterize these miRNAs. We generated light-responsive human retinal organoids that express miRNA families and clusters typically found in the retina. Using an in-house developed photostimulation device, we identified a subset of light-regulated miRNAs. Importantly, we found that these miRNAs are differentially regulated by distinct wavelengths of light and have a rapid turnover, highlighting the dynamic and adaptive nature of the human retina.

15.
J Neurosci ; 31(34): 12159-64, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21865458

RESUMO

Developing retinal ganglion cells fire in correlated spontaneous bursts, resulting in propagating waves with robust spatiotemporal features preserved across development and species. Here we investigate the effects of homeostatic adaptation on the circuits controlling retinal waves. Mouse retinal waves were recorded in vitro for up to 35 h with a multielectrode array in presence of the GABA(A) antagonist bicuculline, allowing us to obtain a precise, time-resolved characterization of homeostatic effects in this preparation. Experiments were performed at P4-P6, when GABA(A) signaling is depolarizing in ganglion cells, and at P7-P10, when GABA(A) signaling is hyperpolarizing. At all ages, bicuculline initially increased the wave sizes and other activity metrics. At P5-P6, wave sizes decreased toward control levels within a few hours while firing remained strong, but this ability to compensate disappeared entirely from P7 onwards. This demonstrates that homeostatic control of spontaneous retinal activity maintains specific network dynamic properties in an age-dependent manner, and suggests that the underlying mechanism is linked to GABA(A) signaling.


Assuntos
Envelhecimento/fisiologia , Homeostase/fisiologia , Plasticidade Neuronal/fisiologia , Retina/crescimento & desenvolvimento , Retina/fisiologia , Transdução de Sinais/fisiologia , Ácido gama-Aminobutírico/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Antagonistas GABAérgicos/farmacologia , Homeostase/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Receptores de GABA-A/fisiologia , Retina/citologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Transdução de Sinais/efeitos dos fármacos
16.
Open Biol ; 12(3): 210367, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35259949

RESUMO

Retinal neurons are remarkedly diverse based on structure, function and genetic identity. Classifying these cells is a challenging task, requiring multimodal methodology. Here, we introduce a novel approach for retinal ganglion cell (RGC) classification, based on pharmacogenetics combined with immunohistochemistry and large-scale retinal electrophysiology. Our novel strategy allows grouping of cells sharing gene expression and understanding how these cell classes respond to basic and complex visual scenes. Our approach consists of several consecutive steps. First, the spike firing frequency is increased in RGCs co-expressing a certain gene (Scnn1a or Grik4) using excitatory DREADDs (designer receptors exclusively activated by designer drugs) in order to single out activity originating specifically from these cells. Their spike location is then combined with post hoc immunostaining, to unequivocally characterize their anatomical and functional features. We grouped these isolated RGCs into multiple clusters based on spike train similarities. Using this novel approach, we were able to extend the pre-existing list of Grik4-expressing RGC types to a total of eight and, for the first time, we provide a phenotypical description of 13 Scnn1a-expressing RGCs. The insights and methods gained here can guide not only RGC classification but neuronal classification challenges in other brain regions as well.


Assuntos
Retina , Células Ganglionares da Retina , Encéfalo , Células Ganglionares da Retina/metabolismo
17.
Stem Cells Transl Med ; 11(2): 159-177, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35298655

RESUMO

Retinal drug toxicity screening is essential for the development of safe treatment strategies for a large number of diseases. To this end, retinal organoids derived from human pluripotent stem cells (hPSCs) provide a suitable screening platform due to their similarity to the human retina and the ease of generation in large-scale formats. In this study, two hPSC cell lines were differentiated to retinal organoids, which comprised all key retinal cell types in multiple nuclear and synaptic layers. Single-cell RNA-Seq of retinal organoids indicated the maintenance of retinal ganglion cells and development of bipolar cells: both cell types segregated into several subtypes. Ketorolac, digoxin, thioridazine, sildenafil, ethanol, and methanol were selected as key compounds to screen on retinal organoids because of their well-known retinal toxicity profile described in the literature. Exposure of the hPSC-derived retinal organoids to digoxin, thioridazine, and sildenafil resulted in photoreceptor cell death, while digoxin and thioridazine additionally affected all other cell types, including Müller glia cells. All drug treatments caused activation of astrocytes, indicated by dendrites sprouting into neuroepithelium. The ability to respond to light was preserved in organoids although the number of responsive retinal ganglion cells decreased after drug exposure. These data indicate similar drug effects in organoids to those reported in in vivo models and/or in humans, thus providing the first robust experimental evidence of their suitability for toxicological studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Diferenciação Celular , Digoxina/metabolismo , Digoxina/farmacologia , Humanos , Retina/metabolismo , Citrato de Sildenafila/metabolismo , Citrato de Sildenafila/farmacologia , Tioridazina/metabolismo , Tioridazina/farmacologia
18.
J Neurosci ; 29(4): 1077-86, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19176816

RESUMO

A novel, biophysically realistic model for early-stage, acetylcholine-mediated retinal waves is presented. In this model, neural excitability is regulated through a slow after-hyperpolarization (sAHP) operating on two different temporal scales. As a result, the simulated network exhibits competition between a desynchronizing effect of spontaneous, cell-intrinsic bursts, and the synchronizing effect of synaptic transmission during retinal waves. Cell-intrinsic bursts decouple the retinal network through activation of the sAHP current, and we show that the network is capable of operating at a transition point between purely local and global functional connectedness, which corresponds to a percolation phase transition. Multielectrode array recordings show that, at this point, the properties of retinal waves are reliably predicted by the model. These results indicate that early spontaneous activity in the developing retina is regulated according to a very specific principle, which maximizes randomness and variability in the resulting activity patterns.


Assuntos
Simulação por Computador , Modelos Neurológicos , Rede Nervosa/fisiologia , Retina/fisiologia , Acetilcolina/farmacologia , Animais , Biofísica , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Retina/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Vias Visuais/fisiologia
19.
PLoS One ; 15(6): e0233860, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32479513

RESUMO

The generation of laminated and light responsive retinal organoids from induced pluripotent stem cells (iPSCs) provides a powerful tool for the study of retinal diseases and drug discovery and a robust platform for cell-based therapies. The aim of this study is to investigate whether retinal organoids can retain their morphological and functional characteristics upon storage at room temperature (RT) conditions and shipment by air using a commercially available container that maintains the environment at ambient temperature. Morphological analysis and measurements of neuroepithelial thickness revealed no differences between control, RT incubated and shipped organoids. Similarly immunohistochemical analysis showed no differences in cell type composition and position within the laminated retinal structure. All groups showed a similar response to light, suggesting that the biological function of retinal organoids was not affected by RT storage or shipment. These findings provide an advance in transport of ready-made retinal organoids, increasing their availability to many research and pharma labs worldwide and facilitating cross-collaborative research.


Assuntos
Organoides/transplante , Serviços Postais , Retina/citologia , Doenças Retinianas/terapia , Diferenciação Celular , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Luz , Organoides/efeitos dos fármacos , Organoides/fisiologia , Organoides/efeitos da radiação , Temperatura
20.
Vis Neurosci ; 31(4-5): 287-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25346971
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA