Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(22): 5629-5634, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28228524

RESUMO

Eps15 (epidermal growth factor receptor pathway substrate 15)-homology domain containing proteins (EHDs) comprise a family of dynamin-related mechano-chemical ATPases involved in cellular membrane trafficking. Previous studies have revealed the structure of the EHD2 dimer, but the molecular mechanisms of membrane recruitment and assembly have remained obscure. Here, we determined the crystal structure of an amino-terminally truncated EHD4 dimer. Compared with the EHD2 structure, the helical domains are 50° rotated relative to the GTPase domain. Using electron paramagnetic spin resonance (EPR), we show that this rotation aligns the two membrane-binding regions in the helical domain toward the lipid bilayer, allowing membrane interaction. A loop rearrangement in GTPase domain creates a new interface for oligomer formation. Our results suggest that the EHD4 structure represents the active EHD conformation, whereas the EHD2 structure is autoinhibited, and reveal a complex series of domain rearrangements accompanying activation. A comparison with other peripheral membrane proteins elucidates common and specific features of this activation mechanism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos/genética , Linhagem Celular Tumoral , Cristalografia por Raios X , Ativação Enzimática/fisiologia , Células HeLa , Humanos , Ligação Proteica , Domínios Proteicos/fisiologia , Multimerização Proteica , Transporte Proteico/fisiologia
2.
J Cell Sci ; 128(15): 2766-80, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092940

RESUMO

PACSIN2, a membrane-sculpting BAR domain protein, localizes to caveolae. Here, we found that protein kinase C (PKC) phosphorylates PACSIN2 at serine 313, thereby decreasing its membrane binding and tubulation capacities. Concomitantly, phosphorylation decreased the time span for which caveolae could be tracked at the plasma membrane (the 'tracking duration'). Analyses of the phospho-mimetic S313E mutant suggested that PACSIN2 phosphorylation was sufficient to reduce caveolar-tracking durations. Both hypotonic treatment and isotonic drug-induced PKC activation increased PACSIN2 phosphorylation at serine 313 and shortened caveolar-tracking durations. Caveolar-tracking durations were also reduced upon the expression of other membrane-binding-deficient PACSIN2 mutants or upon RNA interference (RNAi)-mediated PACSIN2 depletion, pointing to a role for PACSIN2 levels in modulating the lifetime of caveolae. Interestingly, the decrease in membrane-bound PACSIN2 was inversely correlated with the recruitment and activity of dynamin 2, a GTPase that mediates membrane scission. Furthermore, expression of EHD2, which stabilizes caveolae and binds to PACSIN2, restored the tracking durations of cells with reduced PACSIN2 levels. These findings suggest that the PACSIN2 phosphorylation decreases its membrane-binding activity, thereby decreasing its stabilizing effect on caveolae and triggering dynamin-mediated removal of caveolae.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/biossíntese , Cavéolas/metabolismo , Membrana Celular/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Dinamina II , Dinaminas/metabolismo , Células Endoteliais/fisiologia , Células HeLa , Humanos , Fosforilação , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais
3.
Traffic ; 13(9): 1286-94, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22679923

RESUMO

Skeletal muscle is continually subjected to microinjuries that must be repaired to maintain structure and function. Fluorescent dye influx after laser injury of muscle fibers is a commonly used assay to study membrane repair. This approach reveals that initial resealing only takes a few seconds. However, by this method the process of membrane repair can only be studied in part and is therefore poorly understood. We investigated membrane repair by visualizing endogenous and GFP-tagged repair proteins after laser wounding. We demonstrate that membrane repair and remodeling after injury is not a quick event but requires more than 20 min. The endogenous repair protein dysferlin becomes visible at the injury site after 20 seconds but accumulates further for at least 30 min. Annexin A1 and F-actin are also enriched at the wounding area. We identified a new participant in the membrane repair process, the ATPase EHD2. We show, that EHD2, but not EHD1 or mutant EHD2, accumulates at the site of injury in human myotubes and at a peculiar structure that develops during membrane remodeling, the repair dome. In conclusion, we established an approach to visualize membrane repair that allows a new understanding of the spatial and temporal events involved.


Assuntos
Proteínas de Transporte/análise , Fibras Musculares Esqueléticas/fisiologia , Sarcolema/fisiologia , Actinas/análise , Anexina A1/análise , Proteínas de Transporte/genética , Caveolina 3/análise , Disferlina , Humanos , Imuno-Histoquímica , Lasers , Proteínas de Membrana/análise , Microscopia de Força Atômica , Fibras Musculares Esqueléticas/química , Proteínas Musculares/análise , Mutação , Sarcolema/química , Sarcolema/ultraestrutura , Proteínas de Transporte Vesicular/análise
4.
Biochim Biophys Acta ; 1779(11): 766-72, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18634912

RESUMO

MicroRNAs (miRNAs) are small cellular RNAs that participate in post-transcriptional gene regulation. Even though they were only recently discovered, research on the biogenesis, mechanism of repression and biological significance of miRNAs has already received much attention. In this study, we have compared expression strategies for miRNA-activity reporter constructs and have examined the dependence of silencing by a particular Drosophila miRNA, bantam, on specific argonaute proteins. Consistent with previous biochemical experiments, we found that bantam silencing is strongly dependent on Ago1, but in addition we could detect the activity of Ago2-loaded bantam. Our experiments suggest that a perfectly complementary design and a transient expression strategy for reporter constructs may--in the case of catalytically active Ago-proteins--lead to a disproportionately strong response mediated by a minor fraction of silencing complexes. We present evidence that Drosophila S2-cells of independent sources differ in their RNAi efficiency in response to dsRNA added to the growth medium, and that the selection antibiotic G418 acts as an inhibitor of RNAi induced by soaking.


Assuntos
Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Inativação Gênica , MicroRNAs/metabolismo , Animais , Linhagem Celular , Meios de Cultura , Proteínas de Drosophila/metabolismo , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Genes Reporter , Gentamicinas/farmacologia , Interferência de RNA/efeitos dos fármacos , RNA de Cadeia Dupla/metabolismo , Transfecção
5.
Structure ; 22(3): 409-420, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24508342

RESUMO

The dynamin-related Eps15-homology domain-containing protein 2 (EHD2) is a membrane-remodeling ATPase that regulates the dynamics of caveolae. Here, we established an electron paramagnetic resonance (EPR) approach to characterize structural features of membrane-bound EHD2. We show that residues at the tip of the helical domain can insert into the membrane and may create membrane curvature by a wedging mechanism. Using EPR and X-ray crystallography, we found that the N terminus is folded into a hydrophobic pocket of the GTPase domain in solution and can be released into the membrane. Cryoelectron microscopy demonstrated that the N terminus is not essential for oligomerization of EHD2 into a membrane-anchored scaffold. Instead, we found a function of the N terminus in regulating targeting and stable association of EHD2 to caveolae. Our data uncover an unexpected, membrane-induced regulatory switch in EHD2 and demonstrate the versatility of EPR to study structure and function of dynamin superfamily proteins.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cavéolas/metabolismo , Células 3T3-L1 , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Dobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína
6.
Mol Biol Cell ; 23(7): 1316-29, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22323287

RESUMO

Eps15 homology domain-containing 2 (EHD2) belongs to the EHD-containing protein family of dynamin-related ATPases involved in membrane remodeling in the endosomal system. EHD2 dimers oligomerize into rings on highly curved membranes, resulting in stimulation of the intrinsic ATPase activity. In this paper, we report that EHD2 is specifically and stably associated with caveolae at the plasma membrane and not involved in clathrin-mediated endocytosis or endosomal recycling, as previously suggested. EHD2 interacts with pacsin2 and cavin1, and ordered membrane assembly of EHD2 is dependent on cavin1 and caveolar integrity. While the EHD of EHD2 is dispensable for targeting, we identified a loop in the nucleotide-binding domain that, together with ATP binding, is required for caveolar localization. EHD2 was not essential for the formation or shaping of caveolae, but high levels of EHD2 caused distortion and loss of endogenous caveolae. Assembly of EHD2 stabilized and constrained caveolae to the plasma membrane to control turnover, and depletion of EHD2, resulting in endocytic and more dynamic and short-lived caveolae. Thus, following the identification of caveolin and cavins, EHD2 constitutes a third structural component of caveolae involved in controlling the stability and turnover of this organelle.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Cavéolas/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sequência de Bases , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cavéolas/ultraestrutura , Caveolina 1/metabolismo , Linhagem Celular , Cricetinae , Proteínas do Citoesqueleto , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Imunoeletrônica , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA