Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proteomics ; 19(14): e1900028, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31168896

RESUMO

Adaptation to the environment during development influences the life-long survival of an animal. While brain-wide proteomic changes are expected to underlie such experience-driven physiological and behavioral flexibility, a comprehensive overview of the nature and extent of the proteomic regulation following an environmental challenge during development is currently lacking. In this study, the brain proteome of larval zebrafish is identified and it is determined how it is altered by an exposure to a natural and physical environmental challenge, namely prolonged exposure to strong water currents. A comprehensive larval zebrafish brain proteome is presented here. Furthermore, 57 proteins that are regulated by the exposure to an environmental challenge are identified, which cover multiple functions including neuronal plasticity, the stress response, axonal growth and guidance, spatial learning, and energy metabolism. These represent candidate proteins that may play crucial roles for the adaption to an environmental challenge during development.


Assuntos
Encéfalo/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Larva , Peixe-Zebra
2.
Blood ; 120(2): 366-75, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22645179

RESUMO

APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy.


Assuntos
Citidina Desaminase/metabolismo , Reparo do DNA/fisiologia , Linfoma/metabolismo , Linfoma/radioterapia , Tolerância a Radiação/fisiologia , Desaminase APOBEC-3G , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular , Citidina Desaminase/antagonistas & inibidores , Citidina Desaminase/química , Citidina Desaminase/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA de Neoplasias/metabolismo , DNA de Neoplasias/efeitos da radiação , Técnicas de Silenciamento de Genes , Humanos , Linfoma/patologia , Microscopia de Força Atômica , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA