Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 8(6): e65773, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799047

RESUMO

Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.


Assuntos
Carcinogênese/genética , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Modelos Biológicos , Software , Teorema de Bayes , Carcinoma de Células Renais/patologia , Aberrações Cromossômicas , Hibridização Genômica Comparativa , Progressão da Doença , Humanos , Neoplasias Renais/patologia , Oncogenes , Programação Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA