Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 48(3): 500-513.e6, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29548671

RESUMO

Virtually the entire surface of the HIV-1-envelope trimer is recognized by neutralizing antibodies, except for a highly glycosylated region at the center of the "silent face" on the gp120 subunit. From an HIV-1-infected donor, #74, we identified antibody VRC-PG05, which neutralized 27% of HIV-1 strains. The crystal structure of the antigen-binding fragment of VRC-PG05 in complex with gp120 revealed an epitope comprised primarily of N-linked glycans from N262, N295, and N448 at the silent face center. Somatic hypermutation occurred preferentially at antibody residues that interacted with these glycans, suggesting somatic development of glycan recognition. Resistance to VRC-PG05 in donor #74 involved shifting of glycan-N448 to N446 or mutation of glycan-proximal residue E293. HIV-1 neutralization can thus be achieved at the silent face center by glycan-recognizing antibody; along with other known epitopes, the VRC-PG05 epitope completes coverage by neutralizing antibody of all major exposed regions of the prefusion closed trimer.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Polissacarídeos/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/metabolismo , Antígenos Virais/química , Antígenos Virais/imunologia , Sítios de Ligação , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Epitopos/metabolismo , Glicopeptídeos/química , Glicopeptídeos/imunologia , Glicosilação , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Modelos Moleculares , Conformação Molecular , Polissacarídeos/química , Ligação Proteica/imunologia , Hipermutação Somática de Imunoglobulina/imunologia , Relação Estrutura-Atividade
2.
Molecules ; 28(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36838756

RESUMO

Cotton (Gossypium hirsutum) is an economically important crop and is widely cultivated around the globe. However, the major problem of cotton is its high vulnerability to biotic and abiotic stresses. It has been around three decades since the cotton plant was genetically engineered with genes encoding insecticidal proteins (mainly Cry proteins) with an aim to protect it against insect attack. Several studies have been reported on the impact of these genes on cotton production and fiber quality. However, the metabolites responsible for conferring resistance in genetically modified cotton need to be explored. The current work aims to unveil the key metabolites responsible for insect resistance in Bt cotton and also compare the conventional multivariate analysis methods with deep learning approaches to perform clustering analysis. We aim to unveil the marker compounds which are responsible for inducing insect resistance in cotton plants. For this purpose, we employed 1H-NMR spectroscopy to perform metabolite profiling of Bt and non-Bt cotton varieties, and a total of 42 different metabolites were identified in cotton plants. In cluster analysis, deep learning approaches (linear discriminant analysis (LDA) and neural networks) showed better separation among cotton varieties compared to conventional methods (principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLSDA)). The key metabolites responsible for inter-class separation were terpinolene, α-ketoglutaric acid, aspartic acid, stigmasterol, fructose, maltose, arabinose, xylulose, cinnamic acid, malic acid, valine, nonanoic acid, citrulline, and shikimic acid. The metabolites which regulated differently with the level of significance p < 0.001 amongst different cotton varieties belonged to the tricarboxylic acid cycle (TCA), Shikimic acid, and phenylpropanoid pathways. Our analyses underscore a biosignature of metabolites that might involve in inducing insect resistance in Bt cotton. Moreover, novel evidence from our study could be used in the metabolic engineering of these biological pathways to improve the resilience of Bt cotton against insect/pest attacks. Lastly, our findings are also in complete support of employing deep machine learning algorithms as a useful tool in metabolomics studies.


Assuntos
Gossypium , Ácido Chiquímico , Animais , Gossypium/genética , Plantas Geneticamente Modificadas/genética , Ácido Chiquímico/metabolismo , Controle Biológico de Vetores , Insetos/genética , Análise Multivariada , Espectroscopia de Ressonância Magnética , Análise de Dados , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo
3.
J Nat Prod ; 85(6): 1503-1513, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35687347

RESUMO

Aurora kinases (Aurora A, B, and C) are a family of serine/threonine kinases that play critical roles during mitotic initiation and progression. Aurora A and B kinases are ubiquitously expressed, and their overexpression and/or amplification in many cancers have been associated with poor prognosis. Several inhibitors that target Aurora kinases A, B, or both have been developed during the past decade with efficacy in different in vitro and in vivo models for a variety of cancers. Recent studies have also identified Aurora A as a synthetic lethal target for different tumor suppressors, including RB1, SMARCA4, and ARID1A, which signifies the need for Aurora-A-selective inhibitors. Here, we report the screening of a small library of quinones (nine naphthoquinones, one orthoquinone, and one anthraquinone) in a biochemical assay for Aurora A kinase that resulted in the identification of several quinones as inhibitors. IC50 determination against Aurora A and B kinases revealed the inhibition of both kinases with selectivity toward Aurora A. Two of the compounds, natural quinone naphthazarin (1) and a pseudo anthraquinone, 2-(chloromethyl)quinizarin (11), potently inhibited the proliferation of various cancer cell lines with IC50 values ranging from 0.16 ± 0.15 to 1.7 ± 0.06 and 0.15 ± 0.04 to 6.3 ± 1.8 µM, respectively. Treatment of cancer cells with these compounds for 24 h resulted in abrogated mitosis and apoptotic cell death. Direct binding of both the compounds with Aurora A kinase was also confirmed through STD NMR analysis. Docking studies predicted the binding of both compounds to the ATP binding pocket of Aurora A kinase. We have, therefore, identified quinones as Aurora kinase inhibitors that can serve as a lead for future drug discovery endeavors.


Assuntos
Aurora Quinase A , Aurora Quinase B , Neoplasias , Inibidores de Proteínas Quinases , Quinonas , Antraquinonas , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase B/antagonistas & inibidores , Linhagem Celular Tumoral , DNA Helicases , Humanos , Proteínas Nucleares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinonas/química , Quinonas/farmacologia , Fatores de Transcrição
4.
J Struct Biol ; 213(1): 107690, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33383190

RESUMO

COVID-19 pandemic, caused by SARS-CoV-2, has drastically affected human health all over the world. After the emergence of the pandemic the major focus of efforts to attenuate the infection has been on repurposing the already approved drugs to treat COVID-19 adopting a fast-track strategy. However, to date a specific regimen to treat COVID-19 is not available. Over the last few months a substantial amount of data about the structures of various key proteins and their recognition partners involved in the SARS-CoV-2 pathogenesis has emerged. These studies have not only provided the molecular level descriptions ofthe viral pathogenesis but also laid the foundation for rational drug design and discovery. In this review, we have recapitulated the structural details of four key viral enzymes, RNA-dependent RNA polymerase, 3-chymotrypsin like protease, papain-like protease and helicase, and two host factors including angiotensin-converting enzyme 2 and transmembrane serine protease involved in the SARS-CoV-2 pathogenesis, and described the potential hotspots present on these structures which could be explored for therapeutic intervention. We have also discussed the significance of endoplasmic reticulum α-glucosidases as potential targets for anti-SARS-CoV-2 drug discovery.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Exorribonucleases/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Metiltransferases/metabolismo , RNA Helicases/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo
5.
Plant Cell Rep ; 40(12): 2341-2356, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34486076

RESUMO

KEY MESSAGE: RIN4 homologs from important crop species differ in their ability to prevent ectopic activity of the nucleotide binding-leucine rich repeat resistance protein, RPS2. Pathogens deploy virulence effectors to perturb host processes. Plants utilize intracellular resistance (R) proteins to recognize pathogen effectors either by direct interaction or indirectly via effector-mediated perturbations of host components. RPM1-INTERACTING PROTEIN4 (RIN4) is a plant immune regulator that mediates the indirect activation of multiple, independently evolved R-proteins by multiple, unrelated effector proteins. One of these, RPS2 (RESISTANT TO P. SYRINGAE2), is activated upon cleavage of Arabidopsis (At)RIN4 by the Pseudomonas syringae effector AvrRpt2. To gain insight into the AvrRpt2-RIN4-RPS2 defense-activation module, we compared the function of AtRIN4 with RIN4 homologs present in a diverse range of plant species. We selected seven homologs containing conserved features of AtRIN4, including two NOI (Nitrate induced) domains, each containing a predicted cleavage site for AvrRpt2, and a C-terminal palmitoylation site predicted to mediate membrane tethering of the proteins. Palmitoylation-mediated tethering of AtRIN4 to the plasma membrane and cleavage by AvrRpt2 are required for suppression and activation of RPS2, respectively. While all seven homologs are localized at the plasma membrane, only four suppress RPS2 when transiently expressed in Nicotiana benthamiana. All seven homologs are cleaved by AvrRpt2 and, for those homologs that are able to suppress RPS2, cleavage relieves suppression of RPS2. Further, we demonstrate that the membrane-tethered, C-terminal AvrRpt2-generated cleavage fragment is sufficient for the suppression of RPS2. Lastly, we show that the membrane localization of RPS2 is unaffected by its suppression or activation status.


Assuntos
Proteínas de Arabidopsis/genética , Produtos Agrícolas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Nicotiana/genética , Imunidade Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Produtos Agrícolas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipoilação , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Plantas Geneticamente Modificadas , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Homologia de Sequência de Aminoácidos , Nicotiana/metabolismo
6.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361796

RESUMO

Meat is a rich source of energy that provides high-value animal protein, fats, vitamins, minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed to fulfill nutritional requirements. However, the increasing burden on the livestock industry has triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to differentiate different meat samples on the basis of metabolites. The metabolic difference between various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent separation and successfully differentiated samples from all four types of meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and α-mannose were found as the major discriminating metabolites between white (chicken) and red meat (chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The relative quantification of differentiating metabolites was performed using one-way ANOVA and Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification of novel signatures (potential biomarkers) to characterize meats from different sources and could potentially be used for quality control purposes in order to differentiate different meat types.


Assuntos
Contaminação de Alimentos/análise , Carne/análise , Metaboloma , Metabolômica/métodos , Aminoácidos/análise , Animais , Bovinos , Galinhas , Colina/análise , Creatina/análise , Equidae , Contaminação de Alimentos/prevenção & controle , Cabras , Humanos , Ácido Láctico/análise , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Manose/análise , Análise Multivariada , Análise de Componente Principal , Especificidade da Espécie
7.
Med Res Rev ; 39(3): 1091-1136, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30506705

RESUMO

Hepatitis C compromises the quality of life of more than 350 million individuals worldwide. Over the last decade, therapeutic regimens for treating hepatitis C virus (HCV) infections have undergone rapid advancements. Initially, structure-based drug design was used to develop molecules that inhibit viral enzymes. Subsequently, establishment of cell-based replicon systems enabled investigations into various stages of HCV life cycle including its entry, replication, translation, and assembly, as well as role of host proteins. Collectively, these approaches have facilitated identification of important molecules that are deemed essential for HCV life cycle. The expanded set of putative virus and host-encoded targets has brought us one step closer to developing robust strategies for efficacious, pangenotypic, and well-tolerated medicines against HCV. Herein, we provide an overview of the development of various classes of virus and host-directed therapies that are currently in use along with others that are undergoing clinical evaluation.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Animais , Antivirais/química , Antivirais/uso terapêutico , Genótipo , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Humanos , Resultado do Tratamento , Vacinas Virais/imunologia
8.
Chembiochem ; 18(8): 764-771, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28166380

RESUMO

Man9 GlcNAc2 (Man-9) present at the surface of HIV makes up the binding sites of several HIV-neutralizing agents and the mammalian lectin DC-SIGN, which is involved in cellular immunity and trans-infections. We describe the conformational properties of Man-9 in its free state and when bound by the HIV entry-inhibitor protein microvirin (MVN), and define the minimum epitopes of both MVN and DC-SIGN by using NMR spectroscopy. To facilitate the implementation of 3D 13 C-edited spectra to deconvolute spectral overlap and to determine the solution structure of Man-9, we developed a robust expression system for the production of 13 C,15 N-labeled glycans in mammalian cells. The studies reveal that Man-9 interacts with HIV-binding proteins through distinct epitopes and adopts diverse conformations in the bound state. In combination with molecular dynamics simulations we observed receptor-bound conformations to be sampled by Man-9 in the free state, thus suggesting a conformational selection mechanism for diverse recognition.


Assuntos
Proteínas de Bactérias/química , Moléculas de Adesão Celular/química , Lectinas Tipo C/química , Espectroscopia de Ressonância Magnética , Mananas/química , Lectina de Ligação a Manose/química , Receptores de Superfície Celular/química , Células A549 , Configuração de Carboidratos , Radioisótopos de Carbono , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Humanos , Mananas/biossíntese , Microcystis , Simulação de Dinâmica Molecular , Radioisótopos de Nitrogênio
9.
Nature ; 480(7377): 336-43, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22113616

RESUMO

Variable regions 1 and 2 (V1/V2) of human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein are critical for viral evasion of antibody neutralization, and are themselves protected by extraordinary sequence diversity and N-linked glycosylation. Human antibodies such as PG9 nonetheless engage V1/V2 and neutralize 80% of HIV-1 isolates. Here we report the structure of V1/V2 in complex with PG9. V1/V2 forms a four-stranded ß-sheet domain, in which sequence diversity and glycosylation are largely segregated to strand-connecting loops. PG9 recognition involves electrostatic, sequence-independent and glycan interactions: the latter account for over half the interactive surface but are of sufficiently weak affinity to avoid autoreactivity. The structures of V1/V2-directed antibodies CH04 and PGT145 indicate that they share a common mode of glycan penetration by extended anionic loops. In addition to structurally defining V1/V2, the results thus identify a paradigm of antibody recognition for highly glycosylated antigens, which-with PG9-involves a site of vulnerability comprising just two glycans and a strand.


Assuntos
Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/química , HIV-1/imunologia , Vacinas contra a AIDS/química , Vacinas contra a AIDS/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Anticorpos Neutralizantes/química , Afinidade de Anticorpos/imunologia , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/imunologia , Sítios de Ligação de Anticorpos/imunologia , Sequência Conservada , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Glicopeptídeos/química , Glicopeptídeos/imunologia , Glicosilação , Anticorpos Anti-HIV/química , Ligação de Hidrogênio , Evasão da Resposta Imune , Modelos Moleculares , Dados de Sequência Molecular , Polissacarídeos/química , Polissacarídeos/imunologia , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
10.
J Biol Chem ; 287(18): 15076-86, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22403408

RESUMO

To initiate HIV entry, the HIV envelope protein gp120 must engage its primary receptor CD4 and a coreceptor CCR5 or CXCR4. In the absence of a high resolution structure of a gp120-coreceptor complex, biochemical studies of CCR5 have revealed the importance of its N terminus and second extracellular loop (ECL2) in binding gp120 and mediating viral entry. Using a panel of synthetic CCR5 ECL2-derived peptides, we show that the C-terminal portion of ECL2 (2C, comprising amino acids Cys-178 to Lys-191) inhibit HIV-1 entry of both CCR5- and CXCR4-using isolates at low micromolar concentrations. In functional viral assays, these peptides inhibited HIV-1 entry in a CD4-independent manner. Neutralization assays designed to measure the effects of CCR5 ECL2 peptides when combined with either with the small molecule CD4 mimetic NBD-556, soluble CD4, or the CCR5 N terminus showed additive inhibition for each, indicating that ECL2 binds gp120 at a site distinct from that of N terminus and acts independently of CD4. Using saturation transfer difference NMR, we determined the region of CCR5 ECL2 used for binding gp120, showed that it can bind to gp120 from both R5 and X4 isolates, and demonstrated that the peptide interacts with a CD4-gp120 complex in a similar manner as to gp120 alone. As the CCR5 N terminus-gp120 interactions are dependent on CD4 activation, our data suggest that gp120 has separate binding sites for the CCR5 N terminus and ECL2, the ECL2 binding site is present prior to CD4 engagement, and it is conserved across CCR5- and CXCR4-using strains. These peptides may serve as a starting point for the design of inhibitors with broad spectrum anti-HIV activity.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , HIV-1 , Peptídeos/química , Peptídeos/farmacologia , Receptores CCR5/química , Materiais Biomiméticos/farmacologia , Antígenos CD4/química , Antígenos CD4/genética , Antígenos CD4/metabolismo , Linhagem Celular , Proteína gp120 do Envelope de HIV/agonistas , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR5/química , Receptores CXCR5/genética , Receptores CXCR5/metabolismo
11.
J Virol ; 86(1): 284-92, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031945

RESUMO

Human noroviruses bind with their capsid-protruding domains to histo-blood-group antigens (HBGAs), an interaction thought to direct their entry into cells. Although human noroviruses are the major cause of gastroenteritis outbreaks, development of antivirals has been lacking, mainly because human noroviruses cannot be cultivated. Here we use X-ray crystallography and saturation transfer difference nuclear magnetic resonance (STD NMR) to analyze the interaction of citrate with genogroup II (GII) noroviruses. Crystals of citrate in complex with the protruding domain from norovirus GII.10 Vietnam026 diffracted to 1.4 Å and showed a single citrate bound at the site of HBGA interaction. The citrate interaction was coordinated with a set of capsid interactions almost identical to that involved in recognizing the terminal HBGA fucose, the saccharide which forms the primary conserved interaction between HBGAs and GII noroviruses. Citrate and a water molecule formed a ring-like structure that mimicked the pyranoside ring of fucose. STD NMR showed the protruding domain to have weak affinity for citrate (460 µM). This affinity, however, was similar to the affinities of the protruding domain for fucose (460 µM) and H type 2 trisaccharide (390 µM), an HBGA shown previously to be specifically recognized by human noroviruses. Importantly, competition STD NMR showed that citrate could compete with HBGA for norovirus binding. Together, the results suggest that citrate and other glycomimetics have the potential to block human noroviruses from binding to HBGAs.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Ácido Cítrico/metabolismo , Regulação para Baixo , Fucose/metabolismo , Gastroenterite/metabolismo , Norovirus/metabolismo , Sítios de Ligação , Antígenos de Grupos Sanguíneos/química , Proteínas do Capsídeo/genética , Ácido Cítrico/química , Cristalografia por Raios X , Fucose/química , Gastroenterite/virologia , Humanos , Cinética , Modelos Moleculares , Norovirus/química , Norovirus/genética , Ligação Proteica , Estrutura Terciária de Proteína
12.
Biopolymers ; 99(10): 796-806, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23784792

RESUMO

Interactions between proteins and soluble carbohydrates and/or surface displayed glycans are central to countless recognition, attachment and signaling events in biology. The physical chemical features associated with these binding events vary considerably, depending on the biological system of interest. For example, carbohydrate-protein interactions can be stoichiometric or multivalent, the protein receptors can be monomeric or oligomeric, and the specificity of recognition can be highly stringent or rather promiscuous. Equilibrium dissociation constants for carbohydrate binding are known to vary from micromolar to millimolar, with weak interactions being far more prevalent; and individual carbohydrate-binding sites can be truly symmetrical or merely homologous, and hence, the affinities of individual sites within a single protein can vary, as can the order of binding. Several factors, including the weak affinities with which glycans bind their protein receptors, the dynamic nature of the glycans themselves, and the nonequivalent interactions among oligomeric carbohydrate receptors, have made nuclear magnetic resonance (NMR) an especially powerful tool for studying and defining carbohydrate-protein interactions. Here, we describe those NMR approaches that have proven to be the most robust in characterizing these systems, and explain what type of information can (or cannot) be obtained from each. Our goal is to provide the reader the information necessary for selecting the correct experiment or sets of experiments to characterize their carbohydrate-protein interaction of interest.


Assuntos
Sítios de Ligação , Espectroscopia de Ressonância Magnética , Carboidratos/química , Polissacarídeos/química , Ligação Proteica , Proteínas/química
13.
Mol Pharm ; 10(12): 4590-4602, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24152340

RESUMO

Plant or microbial lectins are known to exhibit potent antiviral activities against viruses with glycosylated surface proteins, yet the mechanism(s) by which these carbohydrate-binding proteins exert their antiviral activities is not fully understood. Hepatitis C virus (HCV) is known to possess glycosylated envelope proteins (gpE1E2) and to be potently inhibited by lectins. Here, we tested in detail the antiviral properties of the newly discovered Microcystis viridis lectin (MVL) along with cyanovirin-N (CV-N) and Galanthus nivalis agglutinin (GNA) against cell culture HCV, as well as their binding properties toward viral particles, target cells, and recombinant HCV glycoproteins. Using infectivity assays, CV-N, MVL, and GNA inhibited HCV with IC50 values of 0.6 nM, 30.4 nM, and 11.1 nM, respectively. Biolayer interferometry analysis demonstrated a higher affinity of GNA to immobilized recombinant HCV glycoproteins compared to CV-N and MVL. Complementary studies, including fluorescence-activated cell sorting (FACS) analysis, confocal microscopy, and pre- and post-virus binding assays, showed a complex mechanism of inhibition for CV-N and MVL that includes both viral and cell association, while GNA functions by binding directly to the viral particle. Combinations of GNA with CV-N or MVL in HCV infection studies revealed synergistic inhibitory effects, which can be explained by different glycan recognition profiles of the mainly high-mannoside specific lectins, and supports the hypothesis that these lectins inhibit through different and complex modes of action. Our findings provide important insights into the mechanisms by which lectins inhibit HCV infection. Overall, the data suggest MVL and CV-N have the potential for toxicity due to interactions with cellular proteins while GNA may be a better therapeutic agent due to specificity for the HCV gpE1E2.


Assuntos
Antivirais/farmacologia , Proteínas de Bactérias/farmacologia , Proteínas de Transporte/farmacologia , Hepacivirus/efeitos dos fármacos , Lectinas de Ligação a Manose/farmacologia , Microcystis/metabolismo , Lectinas de Plantas/farmacologia , Linhagem Celular Tumoral , Cianobactérias/metabolismo , Glicoproteínas/metabolismo , Humanos , Proteínas Recombinantes/farmacologia
14.
J Biol Chem ; 286(23): 20788-96, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21471192

RESUMO

Lectins that bind surface envelope glycoprotein gp120 of HIV with high avidity can potently inhibit viral entry. Yet properties such as multivalency that facilitate strong interactions can also cause nonspecific binding and toxicity. The cyanobacterial lectin microvirin (MVN) is unusual as it potently inhibits HIV-1 with negligible toxicity compared with cyanovirin-N (CVN), its well studied antiviral homolog. To understand the structural and mechanistic basis for these differences, we solved the solution structure of MVN free and in complex with its ligand Manα(1-2)Man, and we compared specificity and time windows of inhibition with CVN and Manα(1-2)Man-specific mAb 2G12. We show by NMR and analytical ultracentrifugation that MVN is monomeric in solution, and we demonstrate by NMR that Manα(1-2)Man-terminating carbohydrates interact with a single carbohydrate-binding site. Synchronized infectivity assays show that 2G12, MVN, and CVN inhibit entry with distinct kinetics. Despite shared specificity for Manα(1-2)Man termini, combinations of the inhibitors are synergistic suggesting they recognize discrete glycans and/or dynamic glycan conformations on gp120. Entry assays employing amphotropic viruses show that MVN is inactive, whereas CVN potently inhibits both. In addition to demonstrating that HIV-1 can be inhibited through monovalent interactions, given the similarity of the carbohydrate-binding site common to MVN and CVN, these data suggest that gp120 behaves as a clustered glycan epitope and that multivalent-protein interactions achievable with CVN but not MVN are required for inhibition of some viruses.


Assuntos
Fármacos Anti-HIV/química , Proteínas de Bactérias/química , Dissacaridases/química , Proteína gp120 do Envelope de HIV/química , HIV-1/química , Lectina de Ligação a Manose/química , Manose/química , Fármacos Anti-HIV/farmacologia , Sítios de Ligação , Células HEK293 , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , HIV-1/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular/métodos
15.
J Am Chem Soc ; 134(30): 12346-9, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22788706

RESUMO

The pradimicin family of antibiotics is attracting attention due to its anti-infective properties and as a model for understanding the requirements for carbohydrate recognition by small molecules. Members of the pradimicin family are unique among natural products in their ability to bind sugars in a Ca(2+)-dependent manner, but the oligomerization to insoluble aggregates that occurs upon Ca(2+) binding has prevented detailed characterization of their carbohydrate specificity and biologically relevant form. Here we take advantage of the water solubility of pradimicin S (PRM-S), a sulfated glucose-containing analogue of pradimicin A (PRM-A), to show by NMR spectroscopy and analytical ultracentrifugation that at biologically relevant concentrations, PRM-S binds Ca(2+) to form a tetrameric species that selectively binds and engulfs the trisaccharide Manα1-3(Manα1-6)Man over mannose or mannobiose. In functional HIV-1 entry assays, IC(50) values of 2-4 µM for PRM-S corrrelate with the concentrations at which oligomerization occurs as well as the affinities with which PRM-S binds the HIV surface envelope glycoprotein gp120. Together these data reveal the biologically active form of PRM-S, provide an explanation for previous speculations that PRM-A may contain a second mannose binding site, and expand our understanding of the characteristics that can engender a small molecule with the ability to function as a carbohydrate receptor.


Assuntos
Antraciclinas/farmacologia , Fármacos Anti-HIV/farmacologia , Cálcio/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , Trissacarídeos/metabolismo , Antraciclinas/metabolismo , Fármacos Anti-HIV/metabolismo , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/metabolismo , Humanos , Mananas/metabolismo , Manose/metabolismo , Trissacarídeos/química , Internalização do Vírus/efeitos dos fármacos
16.
PLoS One ; 16(8): e0256816, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34449828

RESUMO

BACKGROUND: Around 30% of the HCV infected patients can spontaneously clear the virus. Cumulative evidence suggests the role of neutralizing antibodies in such spontaneous resolution. Understanding the epitope specificity of such antibodies will inform the rational vaccine design as such information is limited to date. In addition to conformational epitope targeted antibodies, linear epitope specific antibodies have been identified that are broadly cross reactive against diverse HCV strains. In this study, we have characterized the potential role of three conserved linear epitopes in the spontaneous clearance of HCV. METHODS: We tested the reactivity of sera from chronic patients (CP) and spontaneous resolvers (SR) with linear peptides corresponding to three conserved regions of HCV envelope protein E2 spanning amino acids 412-423, 523-532 and 432-443 using ELISA. Subsequently, we characterized the dependency of HCV neutralization by the reactive serum samples on the antibodies specific for these epitopes using pseudoparticle-based neutralization assay. In ELISA most of the CP sera showed reactivity to multiple peptides while most of the SR samples were reactive to a single peptide suggesting presence of more specific antibodies in the SR sera. In most of the HCVpp neutralizing sera of particular peptide reactivity the neutralization was significantly affected by the presence of respective peptide. HCV neutralization by CP sera was affected by multiple peptides while 75% of the HCVpp neutralizing SR sera were competed by the 432 epitope. CONCLUSIONS: These findings suggest that individuals who spontaneously resolve HCV infection at the acute phase, can produce antibodies specific for conserved linear epitopes, and those antibodies can potentially play a role in the spontaneous viral clearance. The epitope present in the 432-443 region of E2 was identified as the primary neutralizing epitope with potential role in spontaneous viral clearance and this epitope potentiates for the design of immunogen for prophylactic vaccine.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/prevenção & controle , Vacinas contra Hepatite Viral/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/genética , Reações Cruzadas/genética , Reações Cruzadas/imunologia , Epitopos/genética , Genótipo , Hepacivirus/genética , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/genética , Humanos , Testes de Neutralização , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/genética
17.
Comput Biol Med ; 122: 103848, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658735

RESUMO

The recent outbreak of coronavirus disease-19 (COVID-19) continues to drastically affect healthcare throughout the world. To date, no approved treatment regimen or vaccine is available to effectively attenuate or prevent the infection. Therefore, collective and multidisciplinary efforts are needed to identify new therapeutics or to explore effectiveness of existing drugs and drug-like small molecules against SARS-CoV-2 for lead identification and repurposing prospects. This study addresses the identification of small molecules that specifically bind to any of the three essential proteins (RdRp, 3CL-protease and helicase) of SARS-CoV-2. By applying computational approaches we screened a library of 4574 compounds also containing FDA-approved drugs against these viral proteins. Shortlisted hits from initial screening were subjected to iterative docking with the respective proteins. Ranking score on the basis of binding energy, clustering score, shape complementarity and functional significance of the binding pocket was applied to identify the binding compounds. Finally, to minimize chances of false positives, we performed docking of the identified molecules with 100 irrelevant proteins of diverse classes thereby ruling out the non-specific binding. Three FDA-approved drugs showed binding to 3CL-protease either at the catalytic pocket or at an allosteric site related to functionally important dimer formation. A drug-like molecule showed binding to RdRp in its catalytic pocket blocking the key catalytic residues. Two other drug-like molecules showed specific interactions with helicase at a key domain involved in catalysis. This study provides lead drugs or drug-like molecules for further in vitro and clinical investigation for drug repurposing and new drug development prospects.


Assuntos
Betacoronavirus/enzimologia , Infecções por Coronavirus/tratamento farmacológico , Reposicionamento de Medicamentos , Pneumonia Viral/tratamento farmacológico , Inibidores de Proteases/farmacologia , Amidas , COVID-19 , Carbamatos , Domínio Catalítico , Simulação por Computador , Ciclopropanos , Dimerização , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Pandemias , Inibidores de Proteases/química , Quinoxalinas/farmacologia , Rimantadina/farmacologia , SARS-CoV-2 , Sulfonamidas , Proteínas Virais/química , Tratamento Farmacológico da COVID-19
18.
Viruses ; 12(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054060

RESUMO

Microvirin (MVN) is one of the human immunodeficiency virus (HIV-1) entry inhibitor lectins, which consists of two structural domains sharing 35% sequence identity and contrary to many other antiviral lectins, it exists as a monomer. In this study, we engineered an MVN variant, LUMS1, consisting of two domains with 100% sequence identity, thereby reducing the chemical heterogeneity, which is a major factor in eliciting immunogenicity. We determined carbohydrate binding of LUMS1 through NMR chemical shift perturbation and tested its anti-HIV activity in single-round infectivity assay and its anti-hepatitis C virus (HCV) activity in three different assays including HCVcc, HCVpp, and replicon assays. We further investigated the effect of LUMS1 on the activation of T helper (Th) and B cells through flow cytometry. LUMS1 showed binding to (1-2)mannobiose, the minimum glycan epitope of MVN, potently inhibited HIV-1 and HCV with EC50 of 37.2 and 45.3 nM, respectively, and showed negligible cytotoxicity with CC50 > 10 µM against PBMCs, Huh-7.5 and HepG2 cells, and 4.9 µM against TZM-bl cells. LUMS1 did not activate Th cells, and its stimulatory effect on B cells was markedly less as compared to MVN. Together, with these effects, LUMS1 represents a potential candidate for the development of antiviral therapies.


Assuntos
Antivirais/farmacologia , HIV-1/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Lectinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Carboidratos , Linhagem Celular , HIV-1/fisiologia , Células Hep G2 , Hepacivirus/fisiologia , Humanos , Lectinas/química , Lectinas/genética , Leucócitos Mononucleares/efeitos dos fármacos , Ligação Proteica , Células Th1/efeitos dos fármacos , Células Th1/imunologia
19.
J Am Chem Soc ; 131(45): 16500-8, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19856962

RESUMO

Carbohydrate binding proteins, or lectins, are engendered with the ability to bind specific carbohydrate structures, thereby mediating cell-cell and cell-pathogen interactions. Lectins are distinct from carbohydrate modifying enzymes and antibodies, respectively, as they do not carry out glycosidase or glycosyl transferase reactions, and they are of nonimmune origin. Cyanobacterial and algal lectins have become prominent in recent years due to their unique biophysical traits, such as exhibiting novel protein folds and unusually high carbohydrate affinity, and ability to potently inhibit HIV-1 entry through high affinity carbohydrate-mediated interactions with the HIV envelope glycoprotein gp120. The antiviral cyanobacterial lectin Microcystis viridis lectin (MVL), which contains two high affinity oligomannose binding sites, is one such example. Here we used glycan microarray profiling, NMR spectroscopy, and mutagenesis to show that one of the two oligomannose binding sites of MVL can catalyze the cleavage of chitin fragments (such as chitotriose) to GlcNAc, to determine the mode of MVL binding to and cleavage of chitotriose, to identify Asp75 as the primary catalytic residue involved in this cleavage, and to solve the solution structure of an inactive mutant of MVL in complex with this unexpected substrate. These studies represent the first demonstration of dual catalytic activity and carbohydrate recognition for discrete oligosaccharides at the same carbohydrate-binding site in a lectin. Sequence comparisons between the N- and C-domains of MVL, together with the sequences of new MVL homologues identified through bioinformatics, provide insight into the evolving roles of carbohydrate recognition.


Assuntos
Carboidratos/química , Glicosídeo Hidrolases/metabolismo , Lectinas/química , Lectinas/metabolismo , Microcystis/química , Sítios de Ligação , Configuração de Carboidratos , Catálise , Glicosídeo Hidrolases/química , Modelos Moleculares , Dados de Sequência Molecular
20.
PLoS One ; 14(4): e0214435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30943224

RESUMO

BACKGROUND: Hepatitis C virus (HCV) infections are amongst the leading public health concerns in Pakistan with a high disease burden. Despite the availability of effective antiviral treatments in the country the disease burden in general population has not lowered. This could be attributed to the asymptomatic nature of this infection that results in lack of diagnosis until the late symptomatic stage. To better estimate and map HCV infections in the country a population-based analysis is necessary for an effective control of the infection. METHODS: Serologic samples of ~66,000 participants from all major cities of the Punjab province were tested for anti-HCV antibodies. The antibody-based seroprevalence was associated with socio-demographic variables including geographical region, age, gender and sex, and occupation. RESULTS: Overall serological response to HCV surface antigens was observed in over 17% of the population. Two of the districts were identified with significantly high prevalence in general population. Analysis by occupation showed significantly high prevalence in farmers (over 40%) followed by jobless and retired individuals, laborers and transporters. A significant difference in seroprevalence was observed in different age groups amongst sex and genders (male, female and transgender) with highest response in individuals of over 40 years of age. Moreover, most of the tested IDUs showed positive response for anti-HCV antibody. CONCLUSION: This study represents a retrospective analysis of HCV infections in general population of the most populated province of Pakistan to identify socio-demographic groups at higher risk. Two geographical regions, Faisalabad and Okara districts, and an occupational group, farmers, were identified with significantly high HCV seroprevalence. These socio-demographic groups are the potential focused groups for follow-up studies on factors contributing to the high HCV prevalence in these groups towards orchestrating effective prevention, control and treatment.


Assuntos
Anticorpos Anti-Hepatite C/sangue , Antígenos da Hepatite C/sangue , Hepatite C/epidemiologia , Estudos Soroepidemiológicos , Adolescente , Adulto , Distribuição por Idade , Idoso , Feminino , Hepacivirus/isolamento & purificação , Hepacivirus/patogenicidade , Hepatite C/sangue , Hepatite C/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Paquistão/epidemiologia , Distribuição por Sexo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA