Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Digit Imaging ; 36(2): 536-546, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36396839

RESUMO

Cancer centers have an urgent and unmet clinical and research need for AI that can guide patient management. A core component of advancing cancer treatment research is assessing response to therapy. Doing so by hand, for example, as per RECIST or RANO criteria, is tedious and time-consuming, and can miss important tumor response information. Most notably, the prevalent response criteria often exclude lesions, the non-target lesions, altogether. We wish to assess change in a holistic fashion that includes all lesions, obtaining simple, informative, and automated assessments of tumor progression or regression. Because genetic sub-types of cancer can be fairly specific and patient enrollment in therapy trials is often limited in number and accrual rate, we wish to make response assessments with small training sets. Deep neuroevolution (DNE) is a novel radiology artificial intelligence (AI) optimization approach that performs well on small training sets. Here, we use a DNE parameter search to optimize a convolutional neural network (CNN) that predicts progression versus regression of metastatic brain disease. We analyzed 50 pairs of MRI contrast-enhanced images as our training set. Half of these pairs, separated in time, qualified as disease progression, while the other 25 image pairs constituted regression. We trained the parameters of a CNN via "mutations" that consisted of random CNN weight adjustments and evaluated mutation "fitness" as summed training set accuracy. We then incorporated the best mutations into the next generation's CNN, repeating this process for approximately 50,000 generations. We applied the CNNs to our training set, as well as a separate testing set with the same class balance of 25 progression and 25 regression cases. DNE achieved monotonic convergence to 100% training set accuracy. DNE also converged monotonically to 100% testing set accuracy. We have thus shown that DNE can accurately classify brain metastatic disease progression versus regression. Future work will extend the input from 2D image slices to full 3D volumes, and include the category of "no change." We believe that an approach such as ours can ultimately provide a useful and informative complement to RANO/RECIST assessment and volumetric AI analysis.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Humanos , Redes Neurais de Computação , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Encéfalo/diagnóstico por imagem , Progressão da Doença
2.
J Digit Imaging ; 35(5): 1143-1152, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35562633

RESUMO

Image classification is probably the most fundamental task in radiology artificial intelligence. To reduce the burden of acquiring and labeling data sets, we employed a two-pronged strategy. We automatically extracted labels from radiology reports in Part 1. In Part 2, we used the labels to train a data-efficient reinforcement learning (RL) classifier. We applied the approach to a small set of patient images and radiology reports from our institution. For Part 1, we trained sentence-BERT (SBERT) on 90 radiology reports. In Part 2, we used the labels from the trained SBERT to train an RL-based classifier. We trained the classifier on a training set of [Formula: see text] images. We tested on a separate collection of [Formula: see text] images. For comparison, we also trained and tested a supervised deep learning (SDL) classification network on the same set of training and testing images using the same labels. Part 1: The trained SBERT model improved from 82 to [Formula: see text] accuracy. Part 2: Using Part 1's computed labels, SDL quickly overfitted the small training set. Whereas SDL showed the worst possible testing set accuracy of 50%, RL achieved [Formula: see text] testing set accuracy, with a [Formula: see text]-value of [Formula: see text]. We have shown the proof-of-principle application of automated label extraction from radiological reports. Additionally, we have built on prior work applying RL to classification using these labels, extending from 2D slices to entire 3D image volumes. RL has again demonstrated a remarkable ability to train effectively, in a generalized manner, and based on small training sets.


Assuntos
Inteligência Artificial , Neuroimagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento Tridimensional , Encéfalo
3.
J Imaging Inform Med ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886289

RESUMO

Two significant obstacles hinder the advancement of Radiology AI. The first is the challenge of overfitting, where small training data sets can result in unreliable outcomes. The second challenge is the need for more generalizability, the lack of which creates difficulties in implementing the technology across various institutions and practices. A recent innovation, deep neuroevolution (DNE), has been introduced to tackle the overfitting issue by training on small data sets and producing accurate predictions. However, the generalizability of DNE has yet to be proven. This paper strives to overcome this barrier by demonstrating that DNE can achieve satisfactory results in diverse external validation sets. The main innovation of the work is thus showing that DNE can generalize to varied outside data. Our example use case is predicting brain metastasis from neuroblastoma, emphasizing the importance of AI with limited data sets. Despite image collection and labeling advancements, rare diseases will always constrain data availability. We optimized a convolutional neural network (CNN) with DNE to demonstrate generalizability. We trained the CNN with 60 MRI images and tested it on a separate diverse collection of images from over 50 institutions. For comparison, we also trained with the more traditional stochastic gradient descent (SGD) method, with the two variants of (1) training from scratch and (2) transfer learning. Our results show that DNE demonstrates excellent generalizability with 97% accuracy on the heterogeneous testing set, while neither form of SGD could reach 60% accuracy. DNE's ability to generalize from small training sets to external and diverse testing sets suggests that it or similar approaches may play an integral role in improving the clinical performance of AI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA