Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(24): e2319679121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830106

RESUMO

Whole-genome duplication (WGD; i.e., polyploidy) and chromosomal rearrangement (i.e., genome shuffling) significantly influence genome structure and organization. Many polyploids show extensive genome shuffling relative to their pre-WGD ancestors. No reference genome is currently available for Platanaceae (Proteales), one of the sister groups to the core eudicots. Moreover, Platanus × acerifolia (London planetree; Platanaceae) is a widely used street tree. Given the pivotal phylogenetic position of Platanus and its 2-y flowering transition, understanding its flowering-time regulatory mechanism has significant evolutionary implications; however, the impact of Platanus genome evolution on flowering-time genes remains unknown. Here, we assembled a high-quality, chromosome-level reference genome for P. × acerifolia using a phylogeny-based subgenome phasing method. Comparative genomic analyses revealed that P. × acerifolia (2n = 42) is an ancient hexaploid with three subgenomes resulting from two sequential WGD events; Platanus does not seem to share any WGD with other Proteales or with core eudicots. Each P. × acerifolia subgenome is highly similar in structure and content to the reconstructed pre-WGD ancestral eudicot genome without chromosomal rearrangements. The P. × acerifolia genome exhibits karyotypic stasis and gene sub-/neo-functionalization and lacks subgenome dominance. The copy number of flowering-time genes in P. × acerifolia has undergone an expansion compared to other noncore eudicots, mainly via the WGD events. Sub-/neo-functionalization of duplicated genes provided the genetic basis underlying the unique flowering-time regulation in P. × acerifolia. The P. × acerifolia reference genome will greatly expand understanding of the evolution of genome organization, genetic diversity, and flowering-time regulation in angiosperms.


Assuntos
Evolução Molecular , Genoma de Planta , Filogenia , Poliploidia , Cromossomos de Plantas/genética , Duplicação Gênica
2.
New Phytol ; 242(3): 1363-1376, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38450804

RESUMO

Polyploidy is an important evolutionary force, yet epigenetic mechanisms, such as DNA methylation, that regulate genome-wide expression of duplicated genes remain largely unknown. Here, we use Tragopogon (Asteraceae) as a model system to discover patterns and temporal dynamics of DNA methylation in recently formed polyploids. The naturally occurring allotetraploid Tragopogon miscellus formed in the last 95-100 yr from parental diploids Tragopogon dubius and T. pratensis. We profiled the DNA methylomes of these three species using whole-genome bisulfite sequencing. Genome-wide methylation levels in T. miscellus were intermediate between its diploid parents. However, nonadditive CG and CHG methylation occurred in transposable elements (TEs), with variation among TE types. Most differentially methylated regions (DMRs) showed parental legacy, but some novel DMRs were detected in the polyploid. Differentially methylated genes (DMGs) were also identified and characterized. This study provides the first assessment of both overall and locus-specific patterns of DNA methylation in a recent natural allopolyploid and shows that novel methylation variants can be generated rapidly after polyploid formation. Together, these results demonstrate that mechanisms to regulate duplicate gene expression may arise soon after allopolyploid formation and that these mechanisms vary among genes.


Assuntos
Asteraceae , Tragopogon , Tragopogon/genética , Asteraceae/genética , Metilação de DNA/genética , Poliploidia , Genoma de Planta
3.
Biochim Biophys Acta ; 1864(8): 896-907, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26993527

RESUMO

Although major advances have been made during the past 20 years in our understanding of the genetic and genomic consequences of polyploidy, our knowledge of polyploidy and the proteome is in its infancy. One of our goals is to stimulate additional study, particularly broad-scale proteomic analyses of polyploids and their progenitors. Although it may be too early to generalize regarding the extent to which transcriptomic data are predictive of the proteome of polyploids, it is clear that the proteome does not always reflect the transcriptome. Despite limited data, important observations on the proteomes of polyploids are emerging. In some cases, proteomic profiles show qualitatively and/or quantitatively non-additive patterns, and proteomic novelty has been observed. Allopolyploids generally combine the parental contributions, but there is evidence of parental dominance of one contributing genome in some allopolyploids. Autopolyploids are typically qualitatively identical to but quantitatively different from their parents. There is also evidence of parental legacy at the proteomic level. Proteomes clearly provide insights into the consequences of genomic merger and doubling beyond what is obtained from genomic and/or transcriptomic data. Translating proteomic changes in polyploids to differences in morphology and physiology remains the holy grail of polyploidy--this daunting task of linking genotype to proteome to phenotype should emerge as a focus of polyploidy research in the next decade. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Poliploidia , Proteoma/metabolismo , Proteômica/métodos , Proteínas de Plantas/genética , Plantas/genética , Proteoma/genética
4.
Methods Mol Biol ; 2545: 475-490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36720829

RESUMO

The genetic consequences following polyploidy (i.e., whole-genome duplication; WGD) vary greatly across organisms and through time since polyploidization. At the gene level in allopolyploids, changes include loss/retention of both parental gene copies, function/expression divergence between the two parental copies, and silencing of one parental copy. Functional studies of genes with different retention patterns contribute to a better understanding of the genetic factors underlying the success of polyploids. Most research on gene functions to date focuses on a few well-established genetic models or crops. However, many species that best exemplify the polyploidy process are nongenetic models; the lack of an efficient genome editing system hinders functional studies in these systems. In this chapter, we discuss the considerations of developing CRISPR, a robust and efficient genome editing system, in polyploid plants that are not genetic models. We use diploid and polyploid Tragopogon (Asteraceae) as examples of a well-studied evolutionary model system for which abundant genetic and genomic resources are lacking. Using this system, we provide our protocols for sgRNA design, plasmid construction, a useful protoplast transient assay, and a plant transformation method we developed for this system. We also provide suggestions for possible modifications to these protocols to help promote successful application to other non-models. With the rapid applications of CRISPR in plant sciences, the broad adaptation of CRISPR in studies of the evolutionary significance of WGD holds enormous potential. We hope our studies and methods developed for polyploid Tragopogon will provide a guideline for establishing a CRISPR system in other nongenetic model polyploids of evolutionary or other interest.


Assuntos
Asteraceae , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Aclimatação , Bioensaio , Poliploidia
5.
Appl Plant Sci ; 8(1): e11314, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993256

RESUMO

The past six years have seen the rapid growth of studies of CRISPR/Cas9 in plant genome editing, a method that enormously facilitates both basic research and practical applications. Most studies have focused on genetic model species, but plant species that are not genetic models may also be economically important or biologically significant, or both. However, developing the CRISPR/Cas9 system in a nongenetic model is challenging. Here, we summarize CRISPR/Cas9 applications in 45 plant genera across 24 families and provide a reference for practical application of CRISPR in nongenetic model plant systems. Suggestions for selecting plant species and target genes are given for proof-of-principle CRISPR studies, and the processes of vector construction are reviewed. We recommend using transient assays to identify a desired CRISPR/Cas9 system in a nongenetic model. We then review methods of plant transformation and describe approaches, using regenerated transgenic plants, for evaluating CRISPR editing results. Lastly, potential future applications of CRISPR in nongenetic model plant species are discussed. This review provides a road map for developing CRISPR in nongenetic models, an application that holds enormous potential in plant biology.

6.
Front Genet ; 11: 888, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849847

RESUMO

Polyploidy is an important evolutionary mechanism and is prevalent among land plants. Most polyploid species examined have multiple origins, which provide genetic diversity and may enhance the success of polyploids. In some polyploids, recurrent origins can result from reciprocal crosses between the same diploid progenitors. Although great progress has been made in understanding the genetic consequences of polyploidy, the genetic implications of reciprocal polyploidization remain poorly understood, especially in natural polyploids. Tragopogon (Asteraceae) has become an evolutionary model system for studies of recent and recurrent polyploidy. Allotetraploid T. miscellus has formed reciprocally in nature with resultant distinctive floral and inflorescence morphologies (i.e., short- vs. long-liguled forms). In this study, we performed comparative inflorescence transcriptome analyses of reciprocally formed T. miscellus and its diploid parents, T. dubius and T. pratensis. In both forms of T. miscellus, homeolog expression of ∼70% of the loci showed vertical transmission of the parental expression patterns (i.e., parental legacy), and ∼20% of the loci showed biased homeolog expression, which was unbalanced toward T. pratensis. However, 17.9% of orthologous pairs showed different homeolog expression patterns between the two forms of T. miscellus. No clear effect of cytonuclear interaction on biased expression of the maternal homeolog was found. In terms of the total expression level of the homeologs studied, 22.6% and 16.2% of the loci displayed non-additive expression in short- and long-liguled T. miscellus, respectively. Unbalanced expression level dominance toward T. pratensis was observed in both forms of T. miscellus. Significantly, genes annotated as being involved in pectin catabolic processes were highly expressed in long-liguled T. miscellus relative to the short-liguled form, and the majority of these differentially expressed genes were transgressively down-regulated in short-liguled T. miscellus. Given the known role of these genes in cell expansion, they may play a role in the differing floral and inflorescence morphologies of the two forms. In summary, the overall inflorescence transcriptome profiles are highly similar between reciprocal origins of T. miscellus. However, the dynamic homeolog-specific expression and non-additive expression patterns observed in T. miscellus emphasize the importance of reciprocal origins in promoting the genetic diversity of polyploids.

7.
Mol Ecol Resour ; 18(6): 1427-1443, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30086204

RESUMO

Tragopogon (Asteraceae) is an excellent natural system for studies of recent polyploidy. Development of an efficient CRISPR/Cas9-based genome editing platform in Tragopogon will facilitate novel studies of the genetic consequences of polyploidy. Here, we report our initial results of developing CRISPR/Cas9 in Tragopogon. We have established a feasible tissue culture and transformation protocol for Tragopogon. Through protoplast transient assays, use of the TragCRISPR system (i.e. the CRISPR/Cas9 system adapted for Tragopogon) was capable of introducing site-specific mutations in Tragopogon protoplasts. Agrobacterium-mediated transformation with Cas9-sgRNA constructs targeting the phytoene desaturase gene (TraPDS) was implemented in this model polyploid system. Sequencing of PCR amplicons from the target regions indicated simultaneous mutations of two alleles and four alleles of TraPDS in albino shoots from Tragopogon porrifolius (2x) and Tragopogon mirus (4x), respectively. The average proportions of successfully transformed calli with the albino phenotype were 87% and 78% in the diploid and polyploid, respectively. This appears to be the first demonstration of CRISPR/Cas9-based genome editing in any naturally formed neopolyploid system. Although a more efficient tissue culture system should be developed in Tragopogon, application of a robust CRISPR/Cas9 system will permit unique studies of biased fractionation, the gene-balance hypothesis and cytonuclear interactions in polyploids. In addition, the CRISPR/Cas9 platform enables investigations of those genes involved in phenotypic changes in polyploids and will also facilitate novel functional biology studies in Asteraceae. Our workflow provides a guide for applying CRISPR/Cas9 to other nongenetic model plant systems.


Assuntos
Edição de Genes/métodos , Poliploidia , Tragopogon/genética , Agrobacterium/genética , Proteína 9 Associada à CRISPR/metabolismo , Técnicas de Cultura de Células , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Mutagênese Sítio-Dirigida , Protoplastos , Transformação Genética
8.
Front Plant Sci ; 8: 436, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424719

RESUMO

Root system architecture (RSA) plays an important role in the acquisition of both nitrogen (N) and phosphorus (P) from the environment. Currently RSA is rarely considered as criteria for selection to improve nutrient uptake efficiency in crop breeding. Under field conditions roots can be greatly influenced by uncontrolled environment factors. Therefore, it is necessary to develop fast selection methods for evaluating root traits of young seedlings in the lab which can then be related to high nutrient efficiency of adult plants in the field. Here, a maize recombination inbred line (RILs) population was used to compare the genetic relationship between RSA and nitrogen and phosphorous efficiency traits. The phenotypes of eight RSA-related traits were evaluated in young seedlings using three different growth systems (i.e., paper roll, hydroponics and vermiculite), and then subjected to correlation analysis with N efficiency and P efficiency related traits measured under field conditions. Quantitative trait loci (QTL) of RSA were determined and QTL co-localizations across different growth systems were further analyzed. Phenotypic associations were observed for most of RSA traits among all three culture systems. RSA-related traits in hydroponics and vermiculite weakly correlated with Nitrogen (NupE) uptake efficiency (r = 0.17-0.31) and Phosphorus (PupE) uptake efficiency (r = 0.22-0.34). This correlation was not found in the paper roll growth system. A total of 14 QTLs for RSA were identified in paper rolls, 18 in hydroponics, and 14 in vermiculite. Co-localization of QTLs for RSA traits were identified in six chromosome regions of bin 1.04/1.05, 1.06, 2.04/2.05, 3.04, 4.05, and 5.04/5.05. The results suggest the problem of using the phenotype from one growth system to predict those in another growth system. Assessing RSA traits at the seedling stage using either hydroponics or a vermiculite system appears better suited than the paper roll system as an important index to accelerate the selection of high N and P efficient genotypes for maize breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA