Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 199(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27849176

RESUMO

Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at about 90% of the theoretical maximum yield (2 ethanol molecules per glucose equivalent) and a titer of 70 g/liter. Its ethanol-producing ability has drawn attention to its metabolic pathways, which could potentially be transferred to other organisms of interest. Here, we report that the iron-containing AdhA is important for ethanol production in the high-ethanol strain of T. saccharolyticum (LL1049). A single-gene deletion of adhA in LL1049 reduced ethanol production by ∼50%, whereas multiple gene deletions of all annotated alcohol dehydrogenase genes except adhA and adhE did not affect ethanol production. Deletion of adhA in wild-type T.saccharolyticum reduced NADPH-linked alcohol dehydrogenase (ADH) activity (acetaldehyde-reducing direction) by 93%.IMPORTANCE In this study, we set out to identify the alcohol dehydrogenases necessary for high ethanol production in T. saccharolyticum Based on previous work, we had assumed that adhE was the primary alcohol dehydrogenase gene. Here, we show that both adhA and adhE are needed for high ethanol yield in the engineered strain LL1049. This is the first report showing adhA is important for ethanol production in a native adhA host, which has important implications for achieving higher ethanol yields in other microorganisms.

2.
J Ind Microbiol Biotechnol ; 44(4-5): 745-757, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28078513

RESUMO

Thermoanaerobacter ethanolicus is a promising candidate for biofuel production due to the broad range of substrates it can utilize and its high ethanol yield compared to other thermophilic bacteria, such as Clostridium thermocellum. Three alcohol dehydrogenases, AdhA, AdhB and AdhE, play key roles in ethanol formation. To study their physiological roles during ethanol formation, we deleted them separately and in combination. Previously, it has been thought that both AdhB and AdhE were bifunctional alcohol dehydrogenases. Here we show that AdhE has primarily acetyl-CoA reduction activity (ALDH) and almost no acetaldehyde reduction (ADH) activity, whereas AdhB has no ALDH activity and but high ADH activity. We found that AdhA and AdhB have similar patterns of activity. Interestingly, although deletion of both adhA and adhB reduced ethanol production, a single deletion of either one actually increased ethanol yields by 60-70%.


Assuntos
Álcool Desidrogenase/metabolismo , Etanol/metabolismo , Thermoanaerobacter/enzimologia , Acetaldeído/metabolismo , Acetilcoenzima A/metabolismo , Álcool Desidrogenase/genética , Biocombustíveis/provisão & distribuição , Thermoanaerobacter/genética
3.
Appl Environ Microbiol ; 82(24): 7134-7141, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27694237

RESUMO

Ferredoxin:NAD+ oxidoreductase (NADH-FNOR) catalyzes the transfer of electrons from reduced ferredoxin to NAD+ This enzyme has been hypothesized to be the main enzyme responsible for ferredoxin oxidization in the NADH-based ethanol pathway in Thermoanaerobacterium saccharolyticum; however, the corresponding gene has not yet been identified. Here, we identified the Tsac_1705 protein as a candidate FNOR based on the homology of its functional domains. We then confirmed its activity in vitro with a ferredoxin-based FNOR assay. To determine its role in metabolism, the tsac_1705 gene was deleted in different strains of T. saccharolyticum In wild-type T. saccharolyticum, deletion of tsac_1705 resulted in a 75% loss of NADH-FNOR activity, which indicated that Tsac_1705 is the main NADH-FNOR in T. saccharolyticum When both NADH- and NADPH-linked FNOR genes were deleted, the ethanol titer decreased and the ratio of ethanol to acetate approached unity, indicative of the absence of FNOR activity. Finally, we tested the effect of heterologous expression of Tsac_1705 in Clostridium thermocellum and found improvements in both the titer and the yield of ethanol. IMPORTANCE: Redox balance plays a crucial role in many metabolic engineering strategies. Ferredoxins are widely used as electron carriers for anaerobic microorganism and plants. This study identified the gene responsible for electron transfer from ferredoxin to NAD+, a key reaction in the ethanol production pathway of this organism and many other metabolic pathways. Identification of this gene is an important step in transferring the ethanol production ability of this organism to other organisms.


Assuntos
Proteínas de Bactérias/metabolismo , Etanol/metabolismo , Ferredoxinas/metabolismo , NAD/metabolismo , Oxirredutases/metabolismo , Thermoanaerobacterium/metabolismo , Proteínas de Bactérias/genética , Fermentação , Regulação Bacteriana da Expressão Gênica , Oxirredução , Oxirredutases/genética , Thermoanaerobacterium/genética
4.
Proc Natl Acad Sci U S A ; 108(33): 13752-7, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21825121

RESUMO

Clostridium thermocellum is a thermophilic, obligately anaerobic, gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.


Assuntos
Álcool Desidrogenase/genética , Clostridium thermocellum/genética , Tolerância a Medicamentos/genética , Etanol/metabolismo , Mutação , Aldeído Oxirredutases , Clostridium thermocellum/enzimologia , Clostridium thermocellum/fisiologia , NAD , NADP
5.
Prep Biochem Biotechnol ; 44(2): 206-16, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24152105

RESUMO

The affinity digestion process for cellulase purification consisting of binding to amorphous cellulose, and amorphous cellulose hydrolysis in the presence of dialysis (Morag et al., 1991), was optimized to obtain high activity recoveries and consistent protein recoveries in the isolation of Clostridium thermocellum cellulase. Experiments were conducted using crude supernatant prepared from C. thermocellum grown on either Avicel or cellobiose. While no difference was observed between Avicel-grown or cellobiose-grown cellulase in the adsorption step, differences were observed during the hydrolysis step. The optimal amorphous cellulose loading was found to be 3 mg amorphous cellulose per milligram supernatant protein. At this loading, 90-100% of activity in the crude supernatant was adsorbed. Twenty-four-hour incubation with the amorphous cellulose during the adsorption stage was found to result in maximal and stable adsorption of activity to the substrate. By fitting the adsorption data to the Langmuir model, an adsorption constant of 410 L/g and a binding capacity of 0.249 g cellulase/g cellulose were obtained. The optimal length of time for hydrolysis was found to be 3 hr for cellulase purified from Avicel cultures and 4 hr for cellulase purified from cellobiose cultures. These loadings and incubation times allowed for more than 85% activity recovery.


Assuntos
Celulossomas/metabolismo , Cromatografia de Afinidade/métodos , Clostridium thermocellum/metabolismo , Adsorção , Clostridium thermocellum/crescimento & desenvolvimento , Hidrólise
6.
Biotechnol Bioeng ; 108(6): 1268-78, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21192004

RESUMO

Studies were undertaken to understand phenomena operative during simultaneous saccharification and fermentation (SSF) of a model cellulosic substrate (Avicel) at 50°C with enzymatic hydrolysis mediated by a commercial cellulase preparation (Spezyme CP) and fermentation by a thermophilic bacterium engineered to produce ethanol at high yield, Thermoanaerobacterium saccharolyticum ALK2. Thermal inactivation at 50 °C, as shown by the loss of 50% of enzyme activity over 4 days in the absence of ethanol, was more severe than at 37 °C, where only 25% of enzyme activity was lost. In addition, at 50 °C ethanol more strongly influenced enzyme stability. Enzyme activity was moderately stabilized between ethanol concentrations of 0 and 40 g/L, but ethanol concentrations above 40 g/L accelerated enzyme inactivation, leading to 75% loss of enzymatic activity in 80 g/L ethanol after 4 days. At 37 °C, ethanol did not show a strong effect on the rate of enzyme inactivation. Inhibition of cellulase activity by ethanol, measured at both temperatures, was relatively similar, with the relative rate of hydrolysis inhibited 50% at ethanol concentrations of 56.4 and 58.7 g/L at 50 and 37 °C, respectively. A mathematical model was developed to test whether the measured phenomena were sufficient to quantitatively describe system behavior and was found to have good predictive capability at initial Avicel concentrations of 20 and 50 g/L.


Assuntos
Celulase/metabolismo , Etanol/metabolismo , Fermentação , Thermoanaerobacterium/metabolismo , Celulose/metabolismo , Temperatura Alta , Modelos Biológicos
7.
Appl Microbiol Biotechnol ; 92(3): 641-52, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21874277

RESUMO

Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.


Assuntos
Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/genética , Etanol/toxicidade , Viabilidade Microbiana/efeitos dos fármacos , Biomassa , Celobiose/metabolismo , Celulose/metabolismo , Clostridium thermocellum/crescimento & desenvolvimento , Clostridium thermocellum/fisiologia , Análise Mutacional de DNA , Tolerância a Medicamentos , Mutação
8.
Bioprocess Biosyst Eng ; 33(4): 485-93, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19649658

RESUMO

The absence of a systematic scale-up approach for biological conversion of cellulosic biomass to commodity products is a significant bottleneck to realizing the potential benefits offered by such conversion. Motivated by this, we undertook to develop a scale-up approach for conversion of waste paper sludge to ethanol. Physical properties of the system were measured and correlations were developed for their dependence upon cellulose conversion. Just-suspension of solid particles was identified as the scale up criterion based on experiments at lab scale. The impeller speed for just solids suspension at large scale was predicted using computational fluid dynamics simulations. The scale-up strategy was validated by analyzing mixing requirements such as solid-liquid mass transfer under the predicted level of agitation at large scale. The scale-up approach enhances the prediction of reactor performance and helps provide guidelines for the analysis and design of large scale bioreactors based on bench scale experimentation.


Assuntos
Reatores Biológicos , Celulose/metabolismo , Etanol/metabolismo , Bioengenharia , Reatores Biológicos/estatística & dados numéricos , Fermentação , Resíduos Industriais , Papel , Eliminação de Resíduos , Esgotos
9.
Biotechnol Bioeng ; 102(1): 66-72, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18781686

RESUMO

A kinetic model of cellulosic biomass conversion to ethanol via simultaneous saccharification and fermentation (SSF) developed previously was validated experimentally using paper sludge as the substrate. Adsorption parameters were evaluated based on the data obtained at various values for fractional cellulose conversion. The adsorption model was then combined with batch SSF data to evaluate the cellulose hydrolysis parameters. With the parameters evaluated for the specific substrate, the discrete model was able to predict SSF successfully both with discrete addition of cellulase only and with discrete feeding of substrate, cellulase, and media. The model tested in this study extends the capability of previous SSF models to semi-continuous feeding configurations, and invites a mechanistic interpretation of the recently observed trend of increasing conversion with decreasing feeding frequency [Fan et al. (2007a) Bioprocess Biosyst Eng 30(1):27-34]. Our results also support the feasibility and utility of determining adsorption parameters based on data obtained at several conversions, particularly when the model is to be applied to extended reaction times rather than only initial hydrolysis rates. The revised model is considerably more computationally efficient than earlier models, and appears for many conditions to be within the capability of simulation using computational fluid dynamics.


Assuntos
Biocatálise , Celulose/metabolismo , Etanol/metabolismo , Papel , Biomassa , Reatores Biológicos , Cinética , Modelos Teóricos
10.
Biotechnol Bioeng ; 102(1): 59-65, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18781687

RESUMO

The model of South et al. [South et al. (1995) Enzyme Microb Technol 17(9): 797-803] for simultaneous saccharification of fermentation of cellulosic biomass is extended and modified to accommodate intermittent feeding of substrate and enzyme, cascade reactor configurations, and to be more computationally efficient. A dynamic enzyme adsorption model is found to be much more computationally efficient than the equilibrium model used previously, thus increasing the feasibility of incorporating the kinetic model in a computational fluid dynamic framework in the future. For continuous or discretely fed reactors, it is necessary to use particle conversion in conversion-dependent hydrolysis rate laws rather than reactor conversion. Whereas reactor conversion decreases due to both reaction and exit of particles from the reactor, particle conversion decreases due to reaction only. Using the modified models, it is predicted that cellulose conversion increases with decreasing feeding frequency (feedings per residence time, f). A computationally efficient strategy for modeling cascade reactors involving a modified rate constant is shown to give equivalent results relative to an exhaustive approach considering the distribution of particles in each successive fermenter.


Assuntos
Celulose/metabolismo , Etanol/metabolismo , Biocatálise , Biomassa , Reatores Biológicos , Fermentação , Cinética , Modelos Teóricos
11.
Biotechnol Bioeng ; 104(5): 932-8, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19575440

RESUMO

The simultaneous saccharification and co-fermentation (SSCF) kinetic model described in the companion paper can predict batch and fed batch fermentations well at solids concentrations up to 62.4 g/L cellulose paper sludge but not in batch fermentation at 82.0 g/L cellulose paper sludge. Four hypotheses for the discrepancy between observation and model prediction at high solids concentration were examined: ethanol inhibition, enzyme deactivation, inhibition by non-metabolizable compounds present in paper sludge, and mass transfer limitation. The results show that mass transfer limitation was responsible for the discrepancy between model and experimental data. The model can predict the value of high paper sludge SSCF in the fermentation period with no mass transfer limitation. The model predicted that maximum ethanol production of fed-batch fermentation was achieved when it was run as close to batch mode as possible with the initial solids loading below the mass transfer limitation threshold. A method for measuring final enzyme activity at the end of fermentation was also developed in this study.


Assuntos
Celulase/metabolismo , Etanol/metabolismo , Papel , Saccharomyces cerevisiae/metabolismo , Esgotos/microbiologia , Xilose/metabolismo , Difusão , Etanol/toxicidade , Fermentação , Cinética , Modelos Estatísticos , Saccharomyces cerevisiae/efeitos dos fármacos
12.
Biotechnol Bioeng ; 104(5): 920-31, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19575439

RESUMO

A kinetic model was developed to predict batch simultaneous saccharification and co-fermentation (SSCF) of paper sludge by the xylose-utilizing yeast Saccharomyces cerevisiae RWB222 and the commercial cellulase preparation Spezyme CP. The model accounts for cellulose and xylan enzymatic hydrolysis and competitive uptake of glucose and xylose. Experimental results show that glucan and xylan enzymatic hydrolysis are highly correlated, and that the low concentrations of xylose encountered during SSCF do not have a significant inhibitory effect on enzymatic hydrolysis. Ethanol is found to not only inhibit the specific growth rate, but also to accelerate cell death. Glucose and xylose uptake rates were found to be competitively inhibitory, but this did not have a large impact during SSCF because the sugar concentrations are low. The model was used to evaluate which constants had the greatest impact on ethanol titer for a fixed substrate loading, enzyme loading, and fermentation time. The cellulose adsorption capacity and cellulose hydrolysis rate constants were found to have the greatest impact among enzymatic hydrolysis related constants, and ethanol yield and maximum ethanol tolerance had the greatest impact among fermentation related constants.


Assuntos
Celulase/metabolismo , Etanol/metabolismo , Papel , Saccharomyces cerevisiae/metabolismo , Esgotos/microbiologia , Xilose/metabolismo , Morte Celular , Etanol/toxicidade , Fermentação , Glucanos/metabolismo , Cinética , Viabilidade Microbiana , Modelos Estatísticos , Saccharomyces cerevisiae/efeitos dos fármacos
13.
Biotechnol Biofuels ; 11: 243, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30202438

RESUMO

BACKGROUND: Anaerobic fermentation of lignocellulose occurs in both natural and managed environments, and is an essential part of the carbon cycle as well as a promising route to sustainable production of fuels and chemicals. Lignocellulose solubilization by mixed microbiomes is important in these contexts. RESULTS: Here, we report the development of stable switchgrass-fermenting enrichment cultures maintained at various residence times and moderately high (55 °C) temperatures. Anaerobic microbiomes derived from a digester inoculum were incubated at 55 °C and fed semi-continuously with medium containing 30 g/L mid-season harvested switchgrass to achieve residence times (RT) of 20, 10, 5, and 3.3 days. Stable, time-invariant cellulolytic methanogenic cultures with minimal accumulation of organic acids were achieved for all RTs. Fractional carbohydrate solubilization was 0.711, 0.654, 0.581 and 0.538 at RT = 20, 10, 5 and 3.3 days, respectively, and glucan solubilization was proportional to xylan solubilization at all RTs. The rate of solubilization was described well by the equation r = k(C - C0fr), where C represents the concentration of unutilized carbohydrate, C0 is the concentration of carbohydrate (cellulose and hemicellulose) entering the bioreactor and fr is the extrapolated fraction of entering carbohydrate that is recalcitrant at infinite residence time. The 3.3 day RT is among the shortest RT reported for stable thermophilic, methanogenic digestion of a lignocellulosic feedstock. 16S rDNA phylotyping and metagenomic analyses were conducted to characterize the effect of RT on community dynamics and to infer functional roles in the switchgrass to biogas conversion to the various microbial taxa. Firmicutes were the dominant phylum, increasing in relative abundance from 54 to 96% as RT decreased. A Clostridium clariflavum strain with genetic markers for xylose metabolism was the most abundant lignocellulose-solubilizing bacterium. A Thermotogae (Defluviitoga tunisiensis) was the most abundant bacterium in switchgrass digesters at RT = 20 days but decreased in abundance at lower RTs as did multiple Chloroflexi. Synergistetes and Euryarchaeota were present at roughly constant levels over the range of RTs examined. CONCLUSIONS: A system was developed in which stable methanogenic steady-states were readily obtained with a particulate biomass feedstock, mid-season switchgrass, at laboratory (1 L) scale. Characterization of the extent and rate of carbohydrate solubilization in combination with 16S rDNA and metagenomic sequencing provides a multi-dimensional view of performance, species composition, glycoside hydrolases, and metabolic function with varying residence time. These results provide a point of reference and guidance for future studies and organism development efforts involving defined cultures.

14.
Biotechnol Biofuels ; 9: 100, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27152121

RESUMO

BACKGROUND: Thermoanaerobacter ethanolicus produces a considerable amount of ethanol from a range of carbohydrates and is an attractive candidate for applications in bioconversion processes. A genetic system with reusable selective markers would be useful for deleting acid production pathways as well as other genetic modifications. RESULTS: The thymidine kinase (tdk) gene was deleted from T. ethanolicus JW200 to allow it to be used as a selectable marker, resulting in strain X20. Deletion of the tdk gene reduced growth rate by 20 %; however, this could be reversed by reintroducing the tdk gene (strain X20C). The tdk and high-temperature kanamycin (htk) markers were tested by using them to delete lactate dehydrogenase (ldh). During positive selection of ldh knockouts in strain X20 on kanamycin agar plates, six out of seven picked colonies were verified transformants. Deletion of ldh reduced lactic acid production by 90 %. The tdk and 5-fluoro-2'-deoxyuridine (FUDR) combination worked reliably as demonstrated by successful tdk removal in all 21 colonies tested. CONCLUSION: A gene deletion and integration system with reusable markers has been developed for Thermoanaerobacter ethanolicus JW200 with positive selection on kanamycin and negative selection on FUDR. Gene deletion was demonstrated by ldh gene deletion and gene integration was demonstrated by re-integration of the tdk gene. Transformation via a natural competence protocol could use DNA PCR products amplified directly from Gibson Assembly mixture for efficient genetic modification.

15.
Biotechnol Biofuels ; 8: 35, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798193

RESUMO

BACKGROUND: Winter annual crops such as winter rye (Secale cereale L) can produce biomass feedstock on seasonally fallow land that continues to provide high-value food and feed from summer annuals such as corn and soybeans. As energy double crops, winter grasses are likely to be harvested while still immature and thus structurally different from the fully senesced plant material typically used for biofuels. This study investigates the dynamic trends in biomass yield, composition, and biological solubilization over the course of a spring harvest season. RESULTS: The water soluble fraction decreased with increasing maturity while total carbohydrate content stayed roughly constant at about 65%. The protein mass fraction decreased with increasing maturity, but was counterbalanced by increasing harvest yield resulting in similar total protein across harvest dates. Winter rye was ground and autoclaved then fermented at 15 g/L total solids by either (1) Clostridium thermocellum or (2) simultaneous saccharification and cofermentation (SSCF) using commercial cellulases (CTec2 and HTec2) and a xylose-fermenting Saccharomyces cerevisiae strain. Solubilization of total carbohydrate dropped significantly as winter rye matured for both C. thermocellum (from approximately 80% to approximately 50%) and SSCF (from approximately 60% to approximately 30%). C. thermocellum achieved total solubilization 33% higher than that of SSCF for the earliest harvest date and 50% higher for the latest harvest date. Potential revenue from protein and bioethanol was stable over a range of different harvest dates, with most of the revenue due to ethanol. In a crop rotation with soybean, recovery of the soluble protein from winter rye could increase per hectare protein production by 20 to 35%. CONCLUSIONS: Double-cropping winter rye can produce significant biomass for biofuel production and feed protein as coproduct without competing with the main summer crop. During a 24-day harvest window, the total carbohydrate content remained relatively constant while the early-harvest yielded much higher carbohydrate solubilization for both C. thermocellum fermentation and SSCF. C. thermocellum fermentation achieved higher carbohydrate solubilization than SSCF across all growth stages tested. Although winter rye's yield, composition, and biological reactivity change rapidly in the spring, it offers a substantial and stable income across the harvest season and thus flexibility for the farmer.

16.
ChemSusChem ; 7(9): 2721-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25088298

RESUMO

During the pretreatment of cellulosic biomass for subsequent microbial or enzymatic processing, the fiber reactivity typically increases with increasing severity but so does sugar degradation. Experimental results with sugarcane bagasse show that this tradeoff can be mitigated substantially by pretreatment in a flow-through (FT) mode. A model that incorporates both kinetics and mass transfer was developed to simulate the performance of pretreatment in plug flow, counter-current flow, cross flow, discrete counter-current and partial FT configurations. The simulated results compare well to the literature for bagasse pretreated in both batch and FT configurations. A variety of FT configurations result in sugar degradation that is very low (1-5%) and 5-20-fold less than a conventional plug flow configuration. The performance exhibits strong sensitivity to the extent of hemicellulose solubilization, particularly for a conventional plug flow configuration.


Assuntos
Celulose/química , Temperatura Alta , Modelos Químicos , Saccharum/química , Água/química , Hidrólise , Cinética , Polissacarídeos/química , Solubilidade
17.
Bioresour Technol ; 130: 117-24, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23306119

RESUMO

A kinetic model for xylan hydrolysis in liquid hot water flow-through pretreatment was developed. The model utilized a declining xylan hydrolysis rate constant with increasing conversion in combination with direct xylooligomer degradation. The model was able to describe experimental results from flow-through pretreatment of corn stover and triticale straw at various pretreatment temperatures, and was applied to predict and compare the performance of xylan hydrolysis in co- and countercurrent flow-through pretreatments. Countercurrent pretreatment resulted in higher concentration of solubilized xylan and 3-6-fold less degradation. Maintaining a temperature gradient along the reactor axis reduced degradation compared to a fixed reactor temperature. Biomass bed shrinking during pretreatment increased the final concentration of solubilized xylan by about 10%. Model predictions were sensitive to the packing density of biomass bed. The model is useful for evaluating biomass flow-through pretreatments and has utility in design of flow-through reactors.


Assuntos
Modelos Químicos , Xilanos/química , Biomassa , Hidrólise , Cinética
18.
Biotechnol Biofuels ; 5(1): 49, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22812930

RESUMO

BACKGROUND: The impact of hydrothermal flowthrough (FT) pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar) and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal cellulase, and fermentation by Clostridium thermocellum). RESULTS: Compared to batch pretreatment, FT pretreatment consistently resulted in higher XMG recovery, higher removal of non-carbohydrate carbon and higher glucan solubilization by simultaneous saccharification and fermentation (SSF). XMG recovery was above 90% for FT pretreatment below 4.1 severity but decreased at higher severities, particularly for bagasse. Removal of non-carbohydrate carbon during FT pretreatment increased from 65% at low severity to 80% at high severity for corn stover, and from 40% to 70% for bagasse and poplar.Solids obtained by FT pretreatment were amenable to high conversion for all of the feedstocks and conversion systems examined. The optimal time and temperature for FT pretreatment on poplar were found to be 16 min and 210°C. At these conditions, SSF glucan conversion was about 85%, 94% of the XMG was removed, and 62% of the non carbohydrate mass was solubilized. Solubilization of FT-pretreated poplar was compared for C. thermocellum fermentation (10% inoculum), and for yeast-fungal cellulase SSF (5% inoculum, cellulase loading of 5 and 10 FPU/g glucan supplemented with ß-glucosidase at 15 and 30 U/g glucan). Under the conditions tested, which featured low solids concentration, C. thermocellum fermentation achieved faster rates and more complete conversion of FT-pretreated poplar than did SSF. Compared to SSF, solubilization by C. thermocellum was 30% higher after 4 days, and was over twice as fast on ball-milled FT-pretreated poplar. CONCLUSIONS: XMG removal trends were similar between feedstocks whereas glucan conversion trends were significantly different, suggesting that factors in addition to XMG removal impact amenability of glucan to enzymatic attack. Corn stover exhibited higher hydrolysis yields than bagasse or poplar, which could be due to higher removal of non-carbohydrate carbon. XMG in bagasse is more easily degraded than XMG in corn stover and poplar. Conversion of FT-pretreated substrates at low concentration was faster and more complete for C. thermocellum than for SSF.

19.
Bioresour Technol ; 103(1): 293-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22055095

RESUMO

Our lab and most others have not been able to close a carbon balance for fermentation by the thermophilic, cellulolytic anaerobe, Clostridium thermocellum. We undertook a detailed accounting of product formation in C. thermocellum ATCC 27405. Elemental analysis revealed that for both cellulose (Avicel) and cellobiose, ≥92% of the substrate carbon utilized could be accounted for in the pellet, supernatant and off-gas when including sampling. However, 11.1% of the original substrate carbon was found in the liquid phase and not in the form of commonly-measured fermentation products--ethanol, acetate, lactate, and formate. Further detailed analysis revealed all the products to be <720 da and have not usually been associated with C. thermocellum fermentation, including malate, pyruvate, uracil, soluble glucans, and extracellular free amino acids. By accounting for these products, 92.9% and 93.2% of the final product carbon was identified during growth on cellobiose and Avicel, respectively.


Assuntos
Carbono/metabolismo , Clostridium thermocellum/fisiologia , Fermentação/fisiologia , Aminoácidos/análise , Celobiose/farmacologia , Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/crescimento & desenvolvimento , Fermentação/efeitos dos fármacos , Nitrogênio/análise
20.
Bioresour Technol ; 102(17): 8040-5, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21683579

RESUMO

In this study, efforts were taken to compare solubilization of Avicel and AFEX pretreated corn stover (AFEX CS) by SSF and Clostridium thermocellum fermentation, with an aim to gain insights into microbial conversion of pretreated cellulosic biomass. Solubilization rates for AFEX CS are comparable for the two systems while solubilization of Avicel is much faster by C. thermocellum. Initial catalyst loading impacts final cellulose conversion for SSF but not for C. thermocellum. Hydrolysis of the two substrates using cell-free C. thermocellum fermentation broth revealed much smaller difference in cellulose conversion than the difference observed for growing cultures. Tests on hemicellulose removal and particle size reduction for AFEX CS indicated that substrate accessibility is very important for enhanced solubilization by C. thermocellum.


Assuntos
Biomassa , Metabolismo dos Carboidratos , Celulose , Clostridium thermocellum/metabolismo , Fermentação , Zea mays/metabolismo , Hidrólise , Tamanho da Partícula , Solubilidade , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA