Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(6): e1011895, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913746

RESUMO

Carbohydrates and glycoproteins modulate key biological functions. However, experimental structure determination of sugar polymers is notoriously difficult. Computational approaches can aid in carbohydrate structure prediction, structure determination, and design. In this work, we developed a glycan-modeling algorithm, GlycanTreeModeler, that computationally builds glycans layer-by-layer, using adaptive kernel density estimates (KDE) of common glycan conformations derived from data in the Protein Data Bank (PDB) and from quantum mechanics (QM) calculations. GlycanTreeModeler was benchmarked on a test set of glycan structures of varying lengths, or "trees". Structures predicted by GlycanTreeModeler agreed with native structures at high accuracy for both de novo modeling and experimental density-guided building. We employed these tools to design de novo glycan trees into a protein nanoparticle vaccine to shield regions of the scaffold from antibody recognition, and experimentally verified shielding. This work will inform glycoprotein model prediction, glycan masking, and further aid computational methods in experimental structure determination and refinement.

2.
PLoS Comput Biol ; 15(3): e1006844, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30845191

RESUMO

Protein loops connect regular secondary structures and contain 4-residue beta turns which represent 63% of the residues in loops. The commonly used classification of beta turns (Type I, I', II, II', VIa1, VIa2, VIb, and VIII) was developed in the 1970s and 1980s from analysis of a small number of proteins of average resolution, and represents only two thirds of beta turns observed in proteins (with a generic class Type IV representing the rest). We present a new clustering of beta-turn conformations from a set of 13,030 turns from 1074 ultra-high resolution protein structures (≤1.2 Å). Our clustering is derived from applying the DBSCAN and k-medoids algorithms to this data set with a metric commonly used in directional statistics applied to the set of dihedral angles from the second and third residues of each turn. We define 18 turn types compared to the 8 classical turn types in common use. We propose a new 2-letter nomenclature for all 18 beta-turn types using Ramachandran region names for the two central residues (e.g., 'A' and 'D' for alpha regions on the left side of the Ramachandran map and 'a' and 'd' for equivalent regions on the right-hand side; classical Type I turns are 'AD' turns and Type I' turns are 'ad'). We identify 11 new types of beta turn, 5 of which are sub-types of classical beta-turn types. Up-to-date statistics, probability densities of conformations, and sequence profiles of beta turns in loops were collected and analyzed. A library of turn types, BetaTurnLib18, and cross-platform software, BetaTurnTool18, which identifies turns in an input protein structure, are freely available and redistributable from dunbrack.fccc.edu/betaturn and github.com/sh-maxim/BetaTurn18. Given the ubiquitous nature of beta turns, this comprehensive study updates understanding of beta turns and should also provide useful tools for protein structure determination, refinement, and prediction programs.


Assuntos
Proteínas/química , Terminologia como Assunto , Algoritmos , Sequência de Aminoácidos , Aminoácidos/química , Análise por Conglomerados , Conformação Proteica , Reprodutibilidade dos Testes
3.
Mol Phylogenet Evol ; 135: 31-44, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30844445

RESUMO

Phylogenetic relationships and phylogeography of six species of Caucasian barbels, the genus Barbus s. str., were studied based on extended geographic coverage and using mtDNA and nDNA markers. Based on 27 species studied, matrilineal phylogeny of the genus Barbus is composed of two clades - (a) West European clade, (b) Central and East European clade. The latter comprises two subclades: (b1) Balkanian subclade, and (b2) Ponto-Caspian one that includes 11 lineages mainly from Black and Caspian Sea drainages. Caucasian barbels are not monophyletic and subdivided for two groups. The Black Sea group encompasses species from tributaries of Black Sea including re-erected B. rionicus and excluding B. kubanicus. The Caspian group includes B. ciscaucasicus, B. cyri (with B. goktschaicus that might be synonymized with B. cyri), B. lacerta from the Tigris-Euphrates basin and B. kubanicus from the Kuban basin. Genetic structure of Black Sea barbels was influenced by glaciation-deglaciation periods accompanying by freshwater phases, periods of migration and colonization of Black Sea tributaries. Intra- and intergeneric hybridization among Caucasian barbines was revealed. In the present study, we report about finding of B. tauricus in the Kuban basin, where only B. kubanicus was thought to inhabit. Hybrids between these species were detected based on both mtDNA and nDNA markers. Remarkably, Kuban population of B. tauricus is distant to closely located conspecific populations and we consider it as relic. We highlight revealing the intergeneric hybridization between evolutionary tetraploid (2n = 100) B. goktschaicus and evolutionary hexaploid (2n = 150) Capoeta sevangi in Lake Sevan.


Assuntos
Cyprinidae/classificação , Cyprinidae/genética , Hibridização Genética , Filogenia , Filogeografia , Actinas/genética , Animais , Sequência de Bases , Teorema de Bayes , Mar Negro , DNA Mitocondrial/genética , Variação Genética , Haplótipos/genética , Íntrons/genética , Fatores de Tempo
4.
Proteins ; 84 Suppl 1: 370-91, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27181425

RESUMO

In CASP11, the organizers sought to bring the biological inferences from predicted structures to the fore. To accomplish this, we assessed the models for their ability to perform quantifiable tasks related to biological function. First, for 10 targets that were probable homodimers, we measured the accuracy of docking the models into homodimers as a function of GDT-TS of the monomers, which produced characteristic L-shaped plots. At low GDT-TS, none of the models could be docked correctly as homodimers. Above GDT-TS of ∼60%, some models formed correct homodimers in one of the largest docked clusters, while many other models at the same values of GDT-TS did not. Docking was more successful when many of the templates shared the same homodimer. Second, we docked a ligand from an experimental structure into each of the models of one of the targets. Docking to the models with two different programs produced poor ligand RMSDs with the experimental structure. Measures that evaluated similarity of contacts were reasonable for some of the models, although there was not a significant correlation with model accuracy. Finally, we assessed whether models would be useful in predicting the phenotypes of missense mutations in three human targets by comparing features calculated from the models with those calculated from the experimental structures. The models were successful in reproducing accessible surface areas but there was little correlation of model accuracy with calculation of FoldX evaluation of the change in free energy between the wild-type and the mutant. Proteins 2016; 84(Suppl 1):370-391. © 2016 Wiley Periodicals, Inc.


Assuntos
Amidoidrolases/química , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteína gp120 do Envelope de HIV/química , Fator de Crescimento de Hepatócito/química , Modelos Estatísticos , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Sítios de Ligação , Biologia Computacional/métodos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Ligantes , Mutação de Sentido Incorreto , Fenótipo , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Termodinâmica
5.
Proc Natl Acad Sci U S A ; 109(2): 449-53, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22198840

RESUMO

The planarity of peptide bonds is an assumption that underlies decades of theoretical modeling of proteins. Peptide bonds strongly deviating from planarity are considered very rare features of protein structure that occur for functional reasons. Here, empirical analyses of atomic-resolution protein structures reveal that trans peptide groups can vary by more than 25° from planarity and that the true extent of nonplanarity is underestimated even in 1.2 Å resolution structures. Analyses as a function of the ϕ,ψ-backbone dihedral angles show that the expected value deviates by ± 8° from planar as a systematic function of conformation, but that the large majority of variation in planarity depends on tertiary effects. Furthermore, we show that those peptide bonds in proteins that are most nonplanar, deviating by over 20° from planarity, are not strongly associated with active sites. Instead, highly nonplanar peptides are simply integral components of protein structure related to local and tertiary structural features that tend to be conserved among homologs. To account for the systematic ϕ,ψ-dependent component of nonplanarity, we present a conformation-dependent library that can be used in crystallographic refinement and predictive protein modeling.


Assuntos
Modelos Moleculares , Peptídeos/química , Conformação Proteica , Proteínas/química , Cristalografia/métodos , Biblioteca de Peptídeos , Peptídeos/metabolismo , Ligação Proteica , Proteínas/metabolismo
6.
Proteins ; 80(2): 591-601, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22105850

RESUMO

The goal of this article is to reduce the complexity of the side chain search within docking problems. We apply six methods of generating side chain conformers to unbound protein structures and determine their ability of obtaining the bound conformation in small ensembles of conformers. Methods are evaluated in terms of the positions of side chain end groups. Results for 68 protein complexes yield two important observations. First, the end-group positions change less than 1 Å on association for over 60% of interface side chains. Thus, the unbound protein structure carries substantial information about the side chains in the bound state, and the inclusion of the unbound conformation into the ensemble of conformers is very beneficial. Second, considering each surface side chain separately in its protein environment, small ensembles of low-energy states include the bound conformation for a large fraction of side chains. In particular, the ensemble consisting of the unbound conformation and the two highest probability predicted conformers includes the bound conformer with an accuracy of 1 Å for 78% of interface side chains. As more than 60% of the interface side chains have only one conformer and many others only a few, these ensembles of low-energy states substantially reduce the complexity of side chain search in docking problems. This approach was already used for finding pockets in protein-protein interfaces that can bind small molecules to potentially disrupt protein-protein interactions. Side-chain search with the reduced search space will also be incorporated into protein docking algorithms.


Assuntos
Algoritmos , Simulação de Acoplamento Molecular/métodos , Proteínas/química , Proteínas/metabolismo , Modelos Moleculares , Probabilidade , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
7.
PLoS Comput Biol ; 6(4): e1000763, 2010 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-20442867

RESUMO

Distributions of the backbone dihedral angles of proteins have been studied for over 40 years. While many statistical analyses have been presented, only a handful of probability densities are publicly available for use in structure validation and structure prediction methods. The available distributions differ in a number of important ways, which determine their usefulness for various purposes. These include: 1) input data size and criteria for structure inclusion (resolution, R-factor, etc.); 2) filtering of suspect conformations and outliers using B-factors or other features; 3) secondary structure of input data (e.g., whether helix and sheet are included; whether beta turns are included); 4) the method used for determining probability densities ranging from simple histograms to modern nonparametric density estimation; and 5) whether they include nearest neighbor effects on the distribution of conformations in different regions of the Ramachandran map. In this work, Ramachandran probability distributions are presented for residues in protein loops from a high-resolution data set with filtering based on calculated electron densities. Distributions for all 20 amino acids (with cis and trans proline treated separately) have been determined, as well as 420 left-neighbor and 420 right-neighbor dependent distributions. The neighbor-independent and neighbor-dependent probability densities have been accurately estimated using Bayesian nonparametric statistical analysis based on the Dirichlet process. In particular, we used hierarchical Dirichlet process priors, which allow sharing of information between densities for a particular residue type and different neighbor residue types. The resulting distributions are tested in a loop modeling benchmark with the program Rosetta, and are shown to improve protein loop conformation prediction significantly. The distributions are available at http://dunbrack.fccc.edu/hdp.


Assuntos
Aminoácidos/química , Teorema de Bayes , Modelos Biológicos , Modelos Estatísticos , Proteínas/química , Algoritmos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Conformação Proteica , Proteínas/genética
8.
J Am Chem Soc ; 132(21): 7312-20, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20446685

RESUMO

Foldamers present a particularly difficult challenge for accurate computational design compared to the case for conventional peptide and protein design due to the lack of a large body of structural data to allow parametrization of rotamer libraries and energies. We therefore explored the use of molecular mechanics for constructing rotamer libraries for non-natural foldamer backbones. We first evaluated the accuracy of molecular mechanics (MM) for the prediction of rotamer probability distributions in the crystal structures of proteins is explored. The van der Waals radius, dielectric constant and effective Boltzmann temperature were systematically varied to maximize agreement with experimental data. Boltzmann-weighted probabilities from these molecular mechanics energies compare well with database-derived probabilities for both an idealized alpha-helix (R = 0.95) as well as beta-strand conformations (R = 0.92). Based on these parameters, de novo rotamer probabilities for secondary structures of peptides built from beta-amino acids were determined. To limit computational complexity, it is useful to establish a residue-specific criterion for excluding rare, high-energy rotamers from the library. This is accomplished by including only those rotamers with probability greater than a given threshold (e.g., 10%) of the random value, defined as 1/n where n is the number of potential rotamers for each residue type.


Assuntos
Aminoácidos/química , Biblioteca de Peptídeos , Proteínas/química , Cristalografia , Modelos Químicos , Dobramento de Proteína , Estrutura Secundária de Proteína
9.
PLoS One ; 15(5): e0232528, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32374785

RESUMO

Protein secondary structure prediction remains a vital topic with broad applications. Due to lack of a widely accepted standard in secondary structure predictor evaluation, a fair comparison of predictors is challenging. A detailed examination of factors that contribute to higher accuracy is also lacking. In this paper, we present: (1) new test sets, Test2018, Test2019, and Test2018-2019, consisting of proteins from structures released in 2018 and 2019 with less than 25% identity to any protein published before 2018; (2) a 4-layer convolutional neural network, SecNet, with an input window of ±14 amino acids which was trained on proteins ≤25% identical to proteins in Test2018 and the commonly used CB513 test set; (3) an additional test set that shares no homologous domains with the training set proteins, according to the Evolutionary Classification of Proteins (ECOD) database; (4) a detailed ablation study where we reverse one algorithmic choice at a time in SecNet and evaluate the effect on the prediction accuracy; (5) new 4- and 5-label prediction alphabets that may be more practical for tertiary structure prediction methods. The 3-label accuracy (helix, sheet, coil) of the leading predictors on both Test2018 and CB513 is 81-82%, while SecNet's accuracy is 84% for both sets. Accuracy on the non-homologous ECOD set is only 0.6 points (83.9%) lower than the results on the Test2018-2019 set (84.5%). The ablation study of features, neural network architecture, and training hyper-parameters suggests the best accuracy results are achieved with good choices for each of them while the neural network architecture is not as critical as long as it is not too simple. Protocols for generating and using unbiased test, validation, and training sets are provided. Our data sets, including input features and assigned labels, and SecNet software including third-party dependencies and databases, are downloadable from dunbrack.fccc.edu/ss and github.com/sh-maxim/ss.


Assuntos
Redes Neurais de Computação , Estrutura Secundária de Proteína , Algoritmos , Sequência de Aminoácidos , Aminoácidos/química , Bases de Dados de Proteínas/estatística & dados numéricos , Aprendizado Profundo , Proteínas/química , Software
10.
Proteins ; 77(4): 778-95, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19603484

RESUMO

Determination of side-chain conformations is an important step in protein structure prediction and protein design. Many such methods have been presented, although only a small number are in widespread use. SCWRL is one such method, and the SCWRL3 program (2003) has remained popular because of its speed, accuracy, and ease-of-use for the purpose of homology modeling. However, higher accuracy at comparable speed is desirable. This has been achieved in a new program SCWRL4 through: (1) a new backbone-dependent rotamer library based on kernel density estimates; (2) averaging over samples of conformations about the positions in the rotamer library; (3) a fast anisotropic hydrogen bonding function; (4) a short-range, soft van der Waals atom-atom interaction potential; (5) fast collision detection using k-discrete oriented polytopes; (6) a tree decomposition algorithm to solve the combinatorial problem; and (7) optimization of all parameters by determining the interaction graph within the crystal environment using symmetry operators of the crystallographic space group. Accuracies as a function of electron density of the side chains demonstrate that side chains with higher electron density are easier to predict than those with low-electron density and presumed conformational disorder. For a testing set of 379 proteins, 86% of chi(1) angles and 75% of chi(1+2) angles are predicted correctly within 40 degrees of the X-ray positions. Among side chains with higher electron density (25-100th percentile), these numbers rise to 89 and 80%. The new program maintains its simple command-line interface, designed for homology modeling, and is now available as a dynamic-linked library for incorporation into other software programs.


Assuntos
Conformação Proteica , Proteínas/química , Software , Algoritmos , Simulação por Computador , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Biblioteca de Peptídeos , Alinhamento de Sequência/estatística & dados numéricos , Design de Software , Eletricidade Estática , Termodinâmica
11.
Bioinformatics ; 23(11): 1437-9, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17483505

RESUMO

UNLABELLED: There are many ftp or http servers storing data required for biological research. While some download applications are available, there is no user-friendly download application with a graphical interface specifically designed and adapted to meet the requirements of bioinformatics. BioDownloader is a program for downloading and updating files from ftp and http servers. It is optimized to work robustly with large numbers of files. It allows the selective retrieval of only the required files (batch downloads, multiple file masks, ls-lR file parsing, recursive search, recent updates, etc.). BioDownloader has a built-in repository containing the settings for common bioinformatics file-synchronization needs, including the Protein Data Bank (PDB) and National Center for Biotechnology Information (NCBI) databases. It can post-process downloaded files, including archive extraction and file conversions. AVAILABILITY: The program can be installed from http://dunbrack.fccc.edu/BioDownloader. The software is freely available for both non-commercial and commercial users under the BSD license.


Assuntos
Algoritmos , Biologia Computacional/métodos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Armazenamento e Recuperação da Informação/métodos , Software , Interface Usuário-Computador , Internet
12.
Proteins ; 66(2): 279-303, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17080462

RESUMO

Protein side chains make most of the specific contacts between proteins and other molecules, and their conformational properties have been studied for many years. These properties have been analyzed primarily in the form of rotamer libraries, which cluster the observed conformations into groups and provide frequencies and average dihedral angles for these groups. In recent years, these libraries have improved with higher resolution structures and using various criteria such as high thermal factors to eliminate side chains that may be misplaced within the crystallographic model coordinates. Many of these side chains have highly non-rotameric dihedral angles. The origin of side chains with high B-factors and/or with non-rotameric dihedral angles is of interest in the determination of protein structures and in assessing the prediction of side chain conformations. In this paper, using a statistical analysis of the electron density of a large set of proteins, it is shown that: (1) most non-rotameric side chains have low electron density compared to rotameric side chains; (2) up to 15% of chi1 non-rotameric side chains in PDB models can clearly be fit to density at a single rotameric conformation and in some cases multiple rotameric conformations; (3) a further 47% of non-rotameric side chains have highly dispersed electron density, indicating potentially interconverting rotameric conformations; (4) the entropy of these side chains is close to that of side chains annotated as having more than one chi(1) rotamer in the crystallographic model; (5) many rotameric side chains with high entropy clearly show multiple conformations that are not annotated in the crystallographic model. These results indicate that modeling of side chains alternating between rotamers in the electron density is important and needs further improvement, both in structure determination and in structure prediction.


Assuntos
Aminoácidos/química , Elétrons , Conformação Proteica , Algoritmos , Sequência de Aminoácidos , Entropia , Modelos Moleculares , Dados de Sequência Molecular , Rotação , Difração de Raios X
14.
J Chem Theory Comput ; 13(6): 3031-3048, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28430426

RESUMO

Over the past decade, the Rosetta biomolecular modeling suite has informed diverse biological questions and engineering challenges ranging from interpretation of low-resolution structural data to design of nanomaterials, protein therapeutics, and vaccines. Central to Rosetta's success is the energy function: a model parametrized from small-molecule and X-ray crystal structure data used to approximate the energy associated with each biomolecule conformation. This paper describes the mathematical models and physical concepts that underlie the latest Rosetta energy function, called the Rosetta Energy Function 2015 (REF15). Applying these concepts, we explain how to use Rosetta energies to identify and analyze the features of biomolecular models. Finally, we discuss the latest advances in the energy function that extend its capabilities from soluble proteins to also include membrane proteins, peptides containing noncanonical amino acids, small molecules, carbohydrates, nucleic acids, and other macromolecules.


Assuntos
Substâncias Macromoleculares/química , Simulação de Dinâmica Molecular , Protease de HIV/química , Protease de HIV/genética , Protease de HIV/metabolismo , Substâncias Macromoleculares/metabolismo , Mutação , Conformação Proteica , Eletricidade Estática , Termodinâmica
15.
MAbs ; 7(6): 1058-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26337947

RESUMO

Phage-display technology facilitates rapid selection of antigen-specific single-chain variable fragment (scFv) antibodies from large recombinant libraries. ScFv antibodies, composed of a VH and VL domain, are readily engineered into multimeric formats for the development of diagnostics and targeted therapies. However, the recombinant nature of the selection strategy can result in VH and VL domains with sub-optimal biophysical properties, such as reduced thermodynamic stability and enhanced aggregation propensity, which lead to poor production and limited application. We found that the C10 anti-epidermal growth factor receptor (EGFR) scFv, and its affinity mutant, P2224, exhibit weak production from E. coli. Interestingly, these scFv contain a fusion of lambda3 and lambda1 V-region (LV3 and LV1) genes, most likely the result of a PCR aberration during library construction. To enhance the biophysical properties of these scFvs, we utilized a structure-based approach to replace and redesign the pre-existing framework of the VL domain to one that best pairs with the existing VH. We describe a method to exchange lambda sequences with a more stable kappa3 framework (KV3) within the VL domain that incorporates the original lambda DE-loop. The resulting scFvs, C10KV3_LV1DE and P2224KV3_LV1DE, are more thermodynamically stable and easier to produce from bacterial culture. Additionally, C10KV3_LV1DE and P2224KV3_LV1DE retain binding affinity to EGFR, suggesting that such a dramatic framework swap does not significantly affect scFv binding. We provide here a novel strategy for redesigning the light chain of problematic scFvs to enhance their stability and therapeutic applicability.


Assuntos
Desenho de Fármacos , Receptores ErbB/imunologia , Cadeias Leves de Imunoglobulina/imunologia , Anticorpos de Cadeia Única/imunologia , Sequência de Aminoácidos , Afinidade de Anticorpos/imunologia , Humanos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/química , Cadeias kappa de Imunoglobulina/genética , Cadeias kappa de Imunoglobulina/imunologia , Cadeias lambda de Imunoglobulina/química , Cadeias lambda de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Biblioteca de Peptídeos , Conformação Proteica , Engenharia de Proteínas/métodos , Homologia de Sequência de Aminoácidos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Termodinâmica
16.
PLoS One ; 9(6): e98309, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24922057

RESUMO

UNLABELLED: Many if not most proteins function in oligomeric assemblies of one or more protein sequences. The Protein Data Bank provides coordinates for biological assemblies for each entry, at least 60% of which are dimers or larger assemblies. BioAssemblyModeler (BAM) is a graphical user interface to the basic steps in homology modeling of protein homooligomers and heterooligomers from the biological assemblies provided in the PDB. BAM takes as input up to six different protein sequences and begins by assigning Pfam domains to the target sequences. The program utilizes a complete assignment of Pfam domains to sequences in the PDB, PDBfam (http://dunbrack2.fccc.edu/protcid/pdbfam), to obtain templates that contain any or all of the domains assigned to the target sequence(s). The contents of the biological assemblies of potential templates are provided, and alignments of the target sequences to the templates are produced with a profile-profile alignment algorithm. BAM provides for visual examination and mouse-editing of the alignments supported by target and template secondary structure information and a 3D viewer of the template biological assembly. Side-chain coordinates for a model of the biological assembly are built with the program SCWRL4. A built-in protocol navigation system guides the user through all stages of homology modeling from input sequences to a three-dimensional model of the target complex. AVAILABILITY: http://dunbrack.fccc.edu/BAM.


Assuntos
Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Homologia de Sequência de Aminoácidos , Software , Animais , Humanos , Subunidades Proteicas/química
17.
Structure ; 19(6): 844-58, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21645855

RESUMO

Rotamer libraries are used in protein structure determination, prediction, and design. The backbone-dependent rotamer library consists of rotamer frequencies, mean dihedral angles, and variances as a function of the backbone dihedral angles. Structure prediction and design methods that employ backbone flexibility would strongly benefit from smoothly varying probabilities and angles. A new version of the backbone-dependent rotamer library has been developed using adaptive kernel density estimates for the rotamer frequencies and adaptive kernel regression for the mean dihedral angles and variances. This formulation allows for evaluation of the rotamer probabilities, mean angles, and variances as a smooth and continuous function of phi and psi. Continuous probability density estimates for the nonrotameric degrees of freedom of amides, carboxylates, and aromatic side chains have been modeled as a function of the backbone dihedrals and rotamers of the remaining degrees of freedom. New backbone-dependent rotamer libraries at varying levels of smoothing are available from http://dunbrack.fccc.edu.


Assuntos
Aminoácidos/química , Modelos Moleculares , Proteínas/química , Algoritmos , Biologia Computacional , Simulação por Computador , Conformação Proteica , Termodinâmica
18.
Structure ; 17(10): 1316-25, 2009 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-19836332

RESUMO

Protein structure determination and predictive modeling have long been guided by the paradigm that the peptide backbone has a single, context-independent ideal geometry. Both quantum-mechanics calculations and empirical analyses have shown this is an incorrect simplification in that backbone covalent geometry actually varies systematically as a function of the phi and Psi backbone dihedral angles. Here, we use a nonredundant set of ultrahigh-resolution protein structures to define these conformation-dependent variations. The trends have a rational, structural basis that can be explained by avoidance of atomic clashes or optimization of favorable electrostatic interactions. To facilitate adoption of this paradigm, we have created a conformation-dependent library of covalent bond lengths and bond angles and shown that it has improved accuracy over existing methods without any additional variables to optimize. Protein structures derived from crystallographic refinement and predictive modeling both stand to benefit from incorporation of the paradigm.


Assuntos
Conformação Proteica , Proteínas/química , Biologia Computacional , Cristalografia , Cristalografia por Raios X
19.
J Mol Biol ; 385(1): 200-11, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18983853

RESUMO

The emergence of resistance to vancomycin and related glycopeptide antibiotics is spurring efforts to develop new antimicrobial therapeutics. High-resolution structural information about antibiotic-ligand recognition should prove valuable in the rational design of improved drugs. We have determined the X-ray crystal structure of the complex of vancomycin with N-acetyl-D-Ala-D-Ala, a mimic of the natural muramyl peptide target, and refined this structure at a resolution of 1.3 A to R and R(free) values of 0.172 and 0.195, respectively. The crystal asymmetric unit contains three back-back vancomycin dimers; two of these dimers participate in ligand-mediated face-face interactions that produce an infinite chain of molecules running throughout the crystal. The third dimer packs against the side of a face-face interface in a tight "side-side" interaction that involves both polar contacts and burial of hydrophobic surface. The trimer of dimers found in the asymmetric unit is essentially identical to complexes seen in three other crystal structures of glycopeptide antibiotics complexed with peptide ligands. These four structures are derived from crystals belonging to different space groups, suggesting that the trimer of dimers may not be simply a crystal packing artifact and prompting us to ask if ligand-mediated oligomerization could be observed in solution. Using size-exclusion chromatography, dynamic light scattering, and small-angle X-ray scattering, we demonstrate that vancomycin forms discrete supramolecular complexes in the presence of tripeptide ligands. Size estimates for these complexes are consistent with assemblies containing four to six vancomycin monomers.


Assuntos
Antibacterianos/química , Vancomicina/química , Cromatografia em Gel , Cristalografia por Raios X , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
20.
J Mol Biol ; 381(2): 487-507, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18599072

RESUMO

Many proteins function as homo-oligomers and are regulated via their oligomeric state. For some proteins, the stoichiometry of homo-oligomeric states under various conditions has been studied using gel filtration or analytical ultracentrifugation experiments. The interfaces involved in these assemblies may be identified using cross-linking and mass spectrometry, solution-state NMR, and other experiments. However, for most proteins, the actual interfaces that are involved in oligomerization are inferred from X-ray crystallographic structures using assumptions about interface surface areas and physical properties. Examination of interfaces across different Protein Data Bank (PDB) entries in a protein family reveals several important features. First, similarities in space group, asymmetric unit size, and cell dimensions and angles (within 1%) do not guarantee that two crystals are actually the same crystal form, containing similar relative orientations and interactions within the crystal. Conversely, two crystals in different space groups may be quite similar in terms of all the interfaces within each crystal. Second, NMR structures and an existing benchmark of PDB crystallographic entries consisting of 126 dimers as well as larger structures and 132 monomers were used to determine whether the existence or lack of common interfaces across multiple crystal forms can be used to predict whether a protein is an oligomer or not. Monomeric proteins tend to have common interfaces across only a minority of crystal forms, whereas higher-order structures exhibit common interfaces across a majority of available crystal forms. The data can be used to estimate the probability that an interface is biological if two or more crystal forms are available. Finally, the Protein Interfaces, Surfaces, and Assemblies (PISA) database available from the European Bioinformatics Institute is more consistent in identifying interfaces observed in many crystal forms compared with the PDB and the European Bioinformatics Institute's Protein Quaternary Server (PQS). The PDB, in particular, is missing highly likely biological interfaces in its biological unit files for about 10% of PDB entries.


Assuntos
Biologia Computacional/métodos , Modelos Estatísticos , Proteínas/química , Biologia Computacional/estatística & dados numéricos , Cristalização , Cristalografia por Raios X , Bases de Dados de Proteínas , Dimerização , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA