Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 1005028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324893

RESUMO

Background: A combination of bioceramics and polymeric materials has attracted the research community's interest in bone tissue engineering. These composites are essential to support cell attachment, proliferation, and osteogenesis differentiation, which are vital as a classic strategy in bone tissue engineering. In this study, NiFe2O4/ZnO-coated poly L-Lactide (PLLA) was employed as a scaffold to evaluate the osteogenic differentiation capability of human adipose tissue derived mesenchymal stem cells (hAMSCs). Material and methods: The electrospun PLLA nanofibers were fabricated, coated with nanocomposite (NiFe2O4/ZnO), and evaluated by the water contact angle (WCA), tensile test, attenuated total reflectance fourier-transform infrared (ATR-FTIR) and scanning electron microscopy (SEM). Then, the osteogenic differentiation potential of hAMSCs was assessed using NiFe2O4/ZnO-coated PLLA compared to tissue culture plastic (TCP) and a simple scaffold (PLLA) in vitro conditions. Results: The adhesion, proliferation, and differentiation of hAMSCs were supported by the mechanical and biological properties of the NiFe2O4/ZnO-coated PLLA scaffold, according to SEM and 4',6-Diamidino-2-phenylindole dihydrochloride (DAPI) staining patterns. During bone differentiation, Alkaline phosphatase (ALP) enzyme activity, biomineralization, calcium content, and osteogenic gene expression (ALP, Osteonectin, Osteocalcin, Collagen type I, and Runx2) were higher on NiFe2O4/ZnO-coated PLLA scaffold than on PLLA scaffold and TCP. Conclusion: Based on our results, the osteogenic differentiation of hAMSCs on the improved biological scaffold (PLLA coated with NiFe2O4/ZnO) could accelerate due to the stimulating effect of this nanocomposite.

2.
PLoS One ; 16(4): e0249648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33891605

RESUMO

Metabolomics analysis of blood from patients (n = 42) undergoing surgery for suspected lung cancer was performed in this study. Venous and arterial blood was collected in both Streck and Heparin tubes. A total of 96 metabolites were detected, affected by sex (n = 56), collection tube (n = 33), and blood location (n = 8). These metabolites belonged to a wide array of compound classes including lipids, acids, pharmaceutical agents, signalling molecules, vitamins, among others. Phospholipids and carboxylic acids accounted for 28% of all detected compounds. Out of the 33 compounds significantly affected by collection tube, 18 compounds were higher in the Streck tubes, including allantoin and ketoleucine, and 15 were higher in the Heparin tubes, including LysoPC(P-16:0), PS 40:6, and chenodeoxycholic acid glycine conjugate. Based on our results, it is recommended that replicate blood samples from each patient should be collected in different types of blood collection tubes for a broader range of the metabolome. Several metabolites were found at higher concentrations in cancer patients such as lactic acid in Squamous Cell Carcinoma, and lysoPCs in Adenocarcinoma and Acinar Cell Carcinoma, which may be used to detect early onset and/or to monitor the progress of the cancer patients.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Neoplasias Pulmonares/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácidos Nucleicos Livres/isolamento & purificação , Feminino , Testes Hematológicos , Heparina/sangue , Heparina/química , Humanos , Neoplasias Pulmonares/sangue , Masculino , Metaboloma/efeitos dos fármacos , Metaboloma/fisiologia , Metabolômica/métodos , Pessoa de Meia-Idade , Fatores Sexuais
3.
PLoS One ; 13(5): e0196154, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29715267

RESUMO

Vespertilionid bats (Mammalia: Order Chiroptera) live 3-10 times longer than other mammals of an equivalent body size. At present, nothing is known of how bat fecal metabolic profiles shift with age in any taxa. This study established the feasibility of using a non-invasive, fecal metabolomics approach to examine age-related differences in the fecal metabolome of young and elderly adult big brown bats (Eptesicus fuscus) as an initial investigation into using metabolomics for age determination. Samples were collected from captive, known-aged big brown bats (Eptesicus fuscus) from 1 to over 14 years of age: these two ages represent age groups separated by approximately 75% of the known natural lifespan of this taxon. Results showed 41 metabolites differentiated young (n = 22) and elderly (n = 6) Eptesicus. Significant differences in metabolites between young and elderly bats were associated with tryptophan metabolism and incomplete protein digestion. Results support further exploration of the physiological mechanisms bats employ to achieve exceptional longevity.


Assuntos
Quirópteros/fisiologia , Fezes/química , Longevidade/fisiologia , Metabolômica , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA