Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 323, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459456

RESUMO

BACKGROUND: Increased mitochondrial activities contributing to cancer cell proliferation, invasion, and metastasis have been reported in different cancers; however, studies on the therapeutic targeting of mitochondria in regulating cell proliferation and invasiveness are limited. Because mitochondria are believed to have evolved through bacterial invasion in mammalian cells, antibiotics could provide an alternative approach to target mitochondria, especially in cancers with increased mitochondrial activities. In this study, we investigated the therapeutic potential of bacteriostatic antibiotics in regulating the growth potential of colorectal cancer (CRC) cells, which differ in their metastatic potential and mitochondrial functions. METHODS: A combination of viability, cell migration, and spheroid formation assays was used to measure the effect on metastatic potential. The effect on mitochondrial mechanisms was investigated by measuring mitochondrial DNA copy number by qPCR, biogenesis (by qPCR and immunoblotting), and functions by measuring reactive oxygen species, membrane potential, and ATP using standard methods. In addition, the effect on assembly and activities of respiratory chain (RC) complexes was determined using blue native gel electrophoresis and in-gel assays, respectively). Changes in metastatic and cell death signaling were measured by immunoblotting with specific marker proteins and compared between CRC cells. RESULTS: Both tigecycline and tetracycline effectively reduced the viability, migration, and spheroid-forming capacity of highly metastatic CRC cells. This increased sensitivity was attributed to reduced mtDNA content, mitochondrial biogenesis, ATP content, membrane potential, and increased oxidative stress. Specifically, complex I assembly and activity were significantly inhibited by these antibiotics in high-metastatic cells. Significant down-regulation in the expression of mitochondrial-mediated survival pathways, such as phospho-AKT, cMYC, phospho-SRC, and phospho-FAK, and upregulation in cell death (apoptosis and autophagy) were observed, which contributed to the enhanced sensitivity of highly metastatic CRC cells toward these antibiotics. In addition, the combined treatment of the CRC chemotherapeutic agent oxaliplatin with tigecycline/tetracycline at physiological concentrations effectively sensitized these cells at early time points. CONCLUSION: Altogether, our study reports that bacterial antibiotics, such as tigecycline and tetracycline, target mitochondrial functions specifically mitochondrial complex I architecture and activity and would be useful in combination with cancer chemotherapeutics for high metastatic conditions.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Tigeciclina/metabolismo , Tigeciclina/farmacologia , Reposicionamento de Medicamentos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Antibacterianos/farmacologia , Neoplasias do Colo/metabolismo , Proliferação de Células , Apoptose , Trifosfato de Adenosina/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Mamíferos/metabolismo
2.
J Gene Med ; 25(4): e3475, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36670344

RESUMO

BACKGROUND: A dysregulation of cholesterol homeostasis is often seen in various cancer cell types, and elevated cholesterol content and that of its metabolites appears to be crucial for cancer progression and metastasis. Cholesterol is a precursor of various steroid hormones and a key plasma membrane component especially in lipid-rafts, also modulating many intracellular signaling pathways. METHODS: To provide an insight of dysregulated cholesterol regulatory genes, their transcript levels were analyzed in different cancers and their influence was correlated with the overall survival of cancer patients using cancer database analysis. RESULTS: This analysis found a set of genes (e.g., ACAT1, RXRA, SOAT1 and SQLE) that were not only often dysregulated, but also had been associated with poorer overall survival in most cancer types. Quantitative reverse transcriptase-polymerase chain reaction analysis revealed elevated SQLE and SOAT1 transcript levels and downregulated expression of RXRA and ACAT1 genes in triple negative breast cancer tissues compared to adjacent control tissues, indicating that this dysregulated expression of the gene signature is a diagnostic marker for breast cancer. CONCLUSION: For the first time, the present study identified a gene signature associated with the dysregulation of cholesterol homeostasis in cancer cells that may not only be used as a diagnostic marker, but also comprise a promising drug target for the advancement of cancer therapy.


Assuntos
Neoplasias da Mama , Colesterol , Humanos , Feminino , Colesterol/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metabolismo dos Lipídeos , Genes Reguladores , Biomarcadores/metabolismo
3.
J Biochem Mol Toxicol ; 37(11): e23454, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37409753

RESUMO

In spite of recent advances made in understanding its progression, cancer is still a leading cause of death across the nations. Molecular pathophysiology of these cancer cells largely differs depending on cancer types and even within the same tumor. Pathological mineralization/calcification is seen in various tissues including breast, prostate, and lung cancer. Osteoblast-like cells derived after trans-differentiation of mesenchymal cells usually drive calcium deposition in various tissues. This study aims to explore the presence of osteoblast-like potential in lung cancer cells and its prevention. ALP assay, ALP staining, nodule formation, RT-PCR, RT-qPCR, and western blot analysis experiments were carried out in lung cancer A549 cells to achieve said objective. Expressions of various osteoblast markers (e.g., ALP, OPN, RUNX2, and Osterix) along with osteoinducer genes (BMP-2 and BMP-4) were observed in A549 cells. Moreover, ALP activity and ability leading to nodule formation revealed the presence of osteoblast-like potential in lung cancer cells. Here, BMP-2 treatment increased expressions of osteoblast transcription factors such as RUNX2 and Osterix, enhanced ALP activity, and augmented calcification in this cell line. It was also observed that antidiabetic metformin inhibited BMP-2 mediated increase in osteoblast-like potential and calcification in these cancer cells. The current study noted that metformin blocked BMP-2 mediated increase in epithelial to mesenchymal transition (EMT) in A549 cells. The above findings for the first time unravel that A549 cells possess osteoblast-like potential which drives lung cancer calcification. Metformin might prevent BMP-2 induced osteoblast-like phenotype of the lung cancer cells with concomitant inhibition of EMT to inhibit lung cancer tissue calcification.


Assuntos
Neoplasias Pulmonares , Metformina , Masculino , Humanos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Neoplasias Pulmonares/metabolismo , Transição Epitelial-Mesenquimal , Metformina/farmacologia , Células A549 , Diferenciação Celular , Osteoblastos/metabolismo , Osteogênese
4.
Intervirology ; 65(4): 181-187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35193136

RESUMO

INTRODUCTION: The ongoing spread of pandemic coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of growing concern. Rapid diagnosis and management of SARS-CoV-2 are crucial for controlling the outbreak in the community. Here, we report the development of a first rapid-colorimetric assay capable of detecting SARS-CoV-2 in the human nasopharyngeal RNA sample in less than 30 min. METHOD: We utilized a nanomaterial-based optical sensing platform to detect RNA-dependent RNA polymerase gene of SARS-CoV-2, where the formation of oligo probe-target hybrid led to salt-induced aggregation and change in gold-colloid color from pink to blue visibility range. Accordingly, we found a change in colloid color from pink to blue in assay containing nasopharyngeal RNA sample from the subject with clinically diagnosed COVID-19. The colloid retained pink color when the test includes samples from COVID-19 negative subjects or human papillomavirus-infected women. RESULTS: The results were validated using nasopharyngeal RNA samples from positive COVID-19 subjects (n = 136). Using real-time polymerase chain reaction as gold standard, the assay was found to have 85.29% sensitivity and 94.12% specificity. The optimized method has detection limit as little as 0.5 ng of SARS-CoV-2 RNA. CONCLUSION: We found that the developed assay rapidly detects SARS-CoV-2 RNA in clinical samples in a cost-effective manner and would be useful in pandemic management by facilitating mass screening.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , RNA Viral/genética , RNA Viral/análise , Pandemias , RNA Polimerase Dependente de RNA , Sensibilidade e Especificidade
5.
BMC Pregnancy Childbirth ; 22(1): 845, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36384496

RESUMO

BACKGROUND: Alterations in mitochondrial signatures such as mitochondrial DNA (mtDNA) content in maternal blood have been linked to pregnancy-related complications. However, changes in maternal mtDNA content, their distribution and associated signaling during normal pregnancies are not clear; which could suggest their physiological role in maternal adaptation to pregnancy related changes and a reference threshold. THE AIM OF THIS STUDY: to assess the distribution of mtDNA in peripheral blood and their association with circulatory ROS levels across different trimesters of healthy pregnancy. METHODS: In this pilot cross sectional study, blood samples of normal pregnant women from each trimester (total = 60) and age-matched non-pregnant (NP) women as control group (n = 20) were analyzed for a) the relative distribution of mtDNA content in cellular and cell free (plasma) fractions using relative quantitative polymerase chain reaction (qPCR) and b) the levels of circulating reactive oxygen species (ROS) by measurement of plasma H2O2. The results were compared between pregnant and NP groups and within trimesters for significant differences, and were also analyzed for their correlation between groups using statistical methods. RESULTS: While, we observed a significant decline in cellular mtDNA; plasma mtDNA was significant increased across all trimesters compared to NP. However, from comparisons within trimesters; only cellular mtDNA content in 3rd trimester was significantly reduced compared to 1st trimester, and plasma mtDNA did not differ significantly among different trimesters. A significantly higher level of plasma H2O2 was also observed during 3rd trimester compared to NP and to 1st trimester. Correlation analysis showed that, while cellular mtDNA content was negatively correlated to plasma mtDNA and to plasma H2O2 levels; plasma mtDNA was positively correlated with plasma H2O2 content. CONCLUSIONS: This study suggested that normal pregnancy is associated with an opposing trend of reduced cellular mtDNA with increased circulatory mtDNA and H2O2 levels, which may contribute to maternal adaptation, required during different stages of pregnancy. Estimation of mtDNA distribution and ROS level in maternal blood could show mitochondrial functionality during normal pregnancy, and could be exploited to identify their prognostic/ diagnostic potential in pregnancy complications.


Assuntos
Ácidos Nucleicos Livres , Feminino , Humanos , Gravidez , Espécies Reativas de Oxigênio , Projetos Piloto , Estudos Transversais , Peróxido de Hidrogênio , DNA Mitocondrial
6.
Hum Mol Genet ; 28(3): 422-433, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30304398

RESUMO

Leber's hereditary optic neuropathy (LHON) is a classical mitochondrial disease caused by mutations in the mitochondrial DNA encoding complex I subunits. Oxidative stress associated with complex I defect has been implicated in developing LHON phenotype such as retinal ganglion cell (RGC) death and loss of vision. However, the mechanism of LHON pathogenesis is still not very clear and thus no effective therapies are available to date. Using cybrid models for LHON, we show that autophagy is significantly compromised in cells carrying LHON-specific mtDNA mutations, which results in reduced clearance of dysfunctional mitochondria contributing to cell death. We further show that pharmacological activation of autophagy selectively clears the damaged mitochondria and thus repairs mitochondrial defects and improves overall cell survival in LHON cell models. Our results suggest that compromised autophagy is the missing link from oxidative stress to LHON pathogenesis. Activation of mitophagy ameliorates mitochondrial defects and exerts a protective role by improving cell survival in cells carrying LHON mutations that could be utilized as a potential therapeutic target for LHON treatment.


Assuntos
Mitofagia/fisiologia , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/fisiopatologia , Apoptose/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Mitocondrial/genética , Humanos , Mitocôndrias/fisiologia , Mutação , Estresse Oxidativo/fisiologia
8.
J Biol Chem ; 289(36): 25382-92, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25053415

RESUMO

myc(-/-) rat fibroblasts (KO cells) differ from myc(+/+) (WT) cells and KO cells with enforced Myc re-expression (KO-Myc cells) with respect to mitochondrial structure and function, utilization of glucose and glutamine as energy-generating substrates, and ATP levels. Specifically, KO cells demonstrate low levels of glycolysis and oxidative phosphorylation, dysfunctional mitochondria and electron transport chain complexes, and depleted ATP stores. We examined here how these cells adapt to their energy-deficient state and how they differ in their uptake and utilization of long- and medium-chain fatty acids such as palmitate and octanoate, respectively. Metabolic tracing of these molecules showed that KO cells preferentially utilize them as ß-oxidation substrates and that, rather than directing them into phospholipids, preferentially store them as neutral lipids. KO cell transcriptional profiling and functional assays revealed a generalized up-regulation of pathways involved in fatty acid transport and catabolism as well as evidence that these cells attempt to direct acetyl-CoA into the tricarboxylic acid (TCA) cycle for ATP production rather than utilizing it for anabolic purposes. Additional evidence to support this idea included the finding that AMP-dependent protein kinase was constitutively activated in KO cells. The complex control of pyruvate dehydrogenase, which links glycolysis to the TCA cycle, was also maximized to ensure the conversion of pyruvate to acetyl-CoA. Despite these efforts to maximize acetyl-CoA for energy-generating purposes, its levels remained chronically low in KO cells. This suggests that tumor cells with Myc deregulation might be susceptible to novel therapies that limit acetyl-CoA availability.


Assuntos
Acetilcoenzima A/metabolismo , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Fibroblastos/citologia , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Glicólise , Humanos , Cetona Oxirredutases/genética , Cetona Oxirredutases/metabolismo , Metabolismo dos Lipídeos , Redes e Vias Metabólicas/genética , Oxirredução , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-myc/genética , Ácido Pirúvico/metabolismo , Interferência de RNA , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Am J Transl Res ; 16(4): 1337-1352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715825

RESUMO

OBJECTIVES: Breast cancer is the most common cancer and the leading cause of cancer-related death among women. An Estrogen Receptor (ER) antagonist called tamoxifen is used as an adjuvant therapy for ER-positive breast cancers. Approximately 40% of patients develop tamoxifen resistance (TAMR) while receiving treatment. Cancer cells can rewire their metabolism to develop resistant phenotypes, and their metabolic state determines how receptive they are to chemotherapy. METHODS: Metabolite extraction from human MCF-7 and MCF-7/TAMR cells was done using the methanol-methanol-water extraction method. After treating the dried samples with methoxamine hydrochloride in pyridine, the samples were derivatized with 2,2,2-Trifluoro-N-methyl-N-(trimethylsilyl)-acetamide, and Chlorotrimethylsilane (MSTFA + 1% TMCS). The Gas chromatography/mass spectrometry (GC-MS) raw data were processed using MSdial and Metaboanalyst for analysis. RESULTS: Univariate analysis revealed that 35 metabolites were elevated in TAMR cells whereas 25 metabolites were downregulated. N-acetyl-D-glucosamine, lysine, uracil, tyrosine, alanine, and o-phosphoserine were upregulated in TAMR cells, while hydroxyproline, glutamine, N-acetyl-L-aspartic acid, threonic acid, pyroglutamic acid, glutamine, o-phosphoethanolamine, oxoglutaric acid, and myoinositol were found to be downregulated. Multivariate analysis revealed a distinct separation between the two cell lines, as evidenced by their metabolite levels. The enriched pathways of deregulated metabolites included valine, leucine, and isoleucine degradation, Citric Acid Cycle, Warburg effect, Malate-Aspartate shuttle, glucose-alanine cycle, propanoate metabolism, and Phospholipid biosynthesis. CONCLUSION: This study revealed dysregulation of various metabolic processes in TAMR cells, which may be crucial in elucidating the molecular basis of the mechanisms underlying acquired tamoxifen resistance.

10.
Cells ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474411

RESUMO

Tumors are composed of heterogeneous populations of dysregulated cells that grow in specialized niches that support their growth and maintain their properties. Tumor heterogeneity and metastasis are among the major hindrances that exist while treating cancer patients, leading to poor clinical outcomes. Although the factors that determine tumor complexity remain largely unknown, several genotypic and phenotypic changes, including DNA mutations and metabolic reprograming provide cancer cells with a survival advantage over host cells and resistance to therapeutics. Furthermore, the presence of a specific population of cells within the tumor mass, commonly known as cancer stem cells (CSCs), is thought to initiate tumor formation, maintenance, resistance, and recurrence. Therefore, these CSCs have been investigated in detail recently as potential targets to treat cancer and prevent recurrence. Understanding the molecular mechanisms involved in CSC proliferation, self-renewal, and dormancy may provide important clues for developing effective therapeutic strategies. Autophagy, a catabolic process, has long been recognized to regulate various physiological and pathological processes. In addition to regulating cancer cells, recent studies have identified a critical role for autophagy in regulating CSC functions. Autophagy is activated under various adverse conditions and promotes cellular maintenance, survival, and even cell death. Thus, it is intriguing to address whether autophagy promotes or inhibits CSC functions and whether autophagy modulation can be used to regulate CSC functions, either alone or in combination. This review describes the roles of autophagy in the regulation of metabolic functions, proliferation and quiescence of CSCs, and its role during therapeutic stress. The review further highlights the autophagy-associated pathways that could be used to regulate CSCs. Overall, the present review will help to rationalize various translational approaches that involve autophagy-mediated modulation of CSCs in controlling cancer progression, metastasis, and recurrence.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Autofagia , Morte Celular , Células-Tronco Neoplásicas/patologia
11.
Hum Mol Genet ; 20(23): 4605-16, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21890492

RESUMO

Previously, we have shown that a heteroplasmic mutation in mitochondrial DNA-encoded complex I ND5 subunit gene resulted in an enhanced tumorigenesis through increased resistance to apoptosis. Here we report that the tumorigenic phenotype associated with complex I dysfunction could be reversed by introducing a yeast NADH quinone oxidoreductase (NDI1) gene. The NDI1 mediated electron transfer from NADH to Co-Q, bypassed the defective complex I and restored oxidative phosphorylation in the host cells. Alternatively, suppression of complex I activity by a specific inhibitor, rotenone or induction of oxidative stress by paraquat led to an increase in the phosphorylation of v-AKT murine thymoma viral oncogene (AKT) and enhanced the tumorigenesis. On the other hand, antioxidant treatment can ameliorate the reactive oxygen species-mediated AKT activation and reverse the tumorigenicity of complex I-deficient cells. Our results suggest that complex I defects could promote tumorigenesis through induction of oxidative stress and activation of AKT pathway.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
FASEB J ; 26(12): 4914-24, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22925728

RESUMO

Mitochondrial genome (mtDNA) mutation causes highly variable clinical features, and its pathogenesis is not fully understood. In this study, we analyzed the heteroplasmic mtDNA mutation C4936T (p.T156I) in ND2 of complex I and the homoplasmic mtDNA mutation A9181G (p.S219G) in ATPase 6 of complex V. Using cybrid technology, we found that in a high-glucose medium in which cultured cells mainly depend on anaerobic glycolysis for energy, the C4936T mutation inhibited cell growth by 50%. Oxygen consumption and reactive oxygen species production were also reduced by 60 and 75%, respectively. Because the subject also had conjunctiva carcinoma, we further tested whether the C4936T mutation was associated with tumor formation. In an anchorage-dependant growth test, we found that only cells with a high level of C4936T mutation formed colonies. In contrast, when the cells grew in a galactose medium in which cells were forced to generate ATP through oxidative phosphorylation, the C4936T mutation protected cells from apoptosis probably caused by the A9181G mutation. Our results suggest that the phenotype caused by mtDNA mutations may depend on the availability of the nutrients. This gene-environment interaction may contribute to the complexity of pathogenesis and clinical phenotypes caused by mtDNA mutation.


Assuntos
Genoma Mitocondrial/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação Puntual , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adulto , Apoptose/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Galactose/farmacologia , Humanos , Células Híbridas/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , ATPases Mitocondriais Próton-Translocadoras , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/genética , Espécies Reativas de Oxigênio/metabolismo
13.
Appl Biochem Biotechnol ; 195(5): 3508-3531, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36877442

RESUMO

The sustainable development of human society in today's high-tech world depends on some form of eco-friendly energy source because existing technologies cannot keep up with the rapid population expansion and the vast amounts of wastewater that result from human activity. A green technology called a microbial fuel cell (MFC) focuses on using biodegradable trash as a substrate to harness the power of bacteria to produce bioenergy. Production of bioenergy and wastewater treatment are the two main uses of MFC. MFCs have also been used in biosensors, water desalination, polluted soil remediation, and the manufacture of chemicals like methane and formate. MFC-based biosensors have gained a lot of attention in the last few decades due to their straightforward operating principle and long-term viability, with a wide range of applications including bioenergy production, treatment of industrial and domestic wastewater, biological oxygen demand, toxicity detection, microbial activity detection, and air quality monitoring, etc. This review focuses on several MFC types and their functions, including the detection of microbial activity.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Humanos , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Água , Eletricidade , Eletrodos
14.
Gene ; 882: 147636, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37442305

RESUMO

Both epigenetic and genetic changes in the cancer genome act simultaneously to promote tumor development and metastasis. Aberrant DNA methylation, a prime epigenetic event, is often observed in various cancer types. The elevated DNA methyltransferase 1 (DNMT1) enzyme creates DNA hypermethylation at CpG islands to drive oncogenic potential. This study emphasized to decipher the molecular mechanism of endogenous regulation of DNMT1 expression for finding upstream signaling molecules. Cancer database analyses found an upregulated DNMT1 expression in most cancer types including breast cancer. Overexpression of DNMT1 showed an increased cell migration, invasion, and stemness potential whereas 5-azacytidine (DNMT1 inhibitor) and siRNA mediated knockdown of DNMT1 exhibited inhibition of such cancer activities in breast cancer MDA-MB-231 and MCF-7 cells. Infact, cancer database analyses further found a positive correlation of DNMT1 transcript with both cholesterol pathway regulatory genes and BMP signaling molecules. Experimental observations documented that the cholesterol-lowering drug, simvastatin decreased DNMT1 transcript as well as protein, whereas BMP-2 treatment increased DNMT1 expression in breast cancer cells. In addition, expression of various key cholesterol regulatory genes was found to be upregulated in response to BMP-2 treatment. Moreover, simvastatin inhibited BMP-2 induced DNMT1 expression in breast cancer cells. Thus, this study for the first time reveals that both BMP-2 signaling and cholesterol pathways could regulate endogenous DNMT1 expression in cancer cells.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Sinvastatina/farmacologia , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Movimento Celular/genética , Metilação de DNA , DNA/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , DNA (Citosina-5-)-Metiltransferases/genética
16.
Nucleic Acids Res ; 38(6): 1913-21, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20022917

RESUMO

Mitochondrial respiratory chain defects have been associated with various diseases and normal aging, particularly in tissues with high energy demands including skeletal muscle. Muscle-specific mitochondrial DNA (mtDNA) mutations have also been reported to accumulate with aging. Our understanding of the molecular processes mediating altered mitochondrial gene expression to dysfunction associated with mtDNA mutations in muscle would be greatly enhanced by our ability to transfer muscle mtDNA to established cell lines. Here, we report the successful generation of mouse cybrids carrying skeletal muscle mtDNA. Using this novel approach, we performed bioenergetic analysis of cells bearing mtDNA derived from young and old mouse skeletal muscles. A significant decrease in oxidative phosphorylation coupling and regulation capacity has been observed with cybrids carrying mtDNA from skeletal muscle of old mice. Our results also revealed decrease growth capacity and cell viability associated with the mtDNA derived from muscle of old mice. These findings indicate that a decline in mitochondrial function associated with compromised mtDNA quality during aging leads to a decrease in both the capacity and regulation of oxidative phosphorylation.


Assuntos
Envelhecimento/genética , DNA Mitocondrial/química , Mitocôndrias/metabolismo , Músculo Esquelético/química , Envelhecimento/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Respiração Celular , Sobrevivência Celular , Células Híbridas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Fosforilação Oxidativa , Consumo de Oxigênio
17.
Curr Drug Targets ; 23(6): 606-627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34431462

RESUMO

Metabolic reprogramming is considered a major event in cancer initiation, progression and metastasis. The metabolic signature of cancer cells includes alterations in glycolysis, mitochondrial respiration, fatty acid/lipid and amino acid metabolism. Being at a junction of various metabolic pathways, mitochondria play a key role in fueling cancer growth through regulating bioenergetics, metabolism and cell death. Increasing evidence suggests that alteration in lipid metabolism is a common feature of metastatic progression, including fatty acid synthesis as well as fatty acid oxidation. However, the interplay between lipid metabolism and mitochondria in carcinogenesis remains obscure. The present review focuses on key lipid metabolic pathways associated with mitochondrial regulation that drive cancer phenotype and metastasis. We also review potential targets of lipid metabolism and mitochondria to improve the therapeutic regime in cancer patients. This review aims to improve our current understanding of the intricate relation of lipids with mitochondria and provides insights into new therapeutic approaches.


Assuntos
Metabolismo dos Lipídeos , Neoplasias , Metabolismo Energético , Ácidos Graxos/metabolismo , Ácidos Graxos/uso terapêutico , Humanos , Mitocôndrias/patologia , Neoplasias/tratamento farmacológico
18.
J Obstet Gynaecol India ; 72(4): 299-306, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35923506

RESUMO

Purpose: Preeclampsia (PE) affects 5-7% of the pregnancies worldwide, and is one of the most dreaded disorders of pregnancy contributing to maternal and neonatal mortality. PE is mostly presented in the third trimester of pregnancy. Here, we used serum placental growth factor (PIGF) and soluble fms-like tyrosine kinase-1 (sFlt-1) to develop a model for predicting PE in Indian women in early second trimester. Methods: In this case-control study, a total 1452 healthy pregnant women were recruited. Blood samples were collected at the following gestational weeks (GWs), 12-20 (GW1), 21-28 (GW2) and 29-term (GW3), and post-delivery. Body mass index (BMI) was calculated by anthropometric measurements. Serum sFlt-1, PIGF and VEGF were analyzed by ELISA. A predictive model for PE was developed using multivariable logistic regression analysis. Results: In PE cases, serum PlGF and VEGF levels were significantly lower at each GW, while serum sFlt-1 was lower only at GW1, relative to age-matched controls, (n = 132/group). Age-matched comparison between PE cases and controls indicated that sFlt-1 was associated with decreased PE outcome (Odds ratio. OR = 0.988, CI = 0.982-0.993), whereas sFlt-1/PlGF ratio (OR = 1.577, CI = 1.344-1.920) and BMI (OR = 1.334, CI = 1.187-1.520) were associated with increased PE outcome. Logistic regression was used to develop a predictive model for PE at GW1. Using testing dataset, model was externally validated which resulted in 88% accuracy in predicting PE cases at 0.5 probability cutoff. Conclusion: Prediction model using sFlt-1, sFlt-1/PlGF ratio and BMI may be useful to predict PE as early as 12-20 weeks in women with optimal sensitivity and specificity.

20.
Hum Mol Genet ; 18(9): 1578-89, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19208652

RESUMO

Mitochondrial alteration has been long proposed to play a major role in tumorigenesis. Recently, mitochondrial DNA (mtDNA) mutations have been found in a variety of cancer cells. In this study, we examined the contribution of mtDNA mutation and mitochondrial dysfunction in tumorigenesis first using human cell lines carrying a frame-shift at NADH dehydrogenase (respiratory complex I) subunit 5 gene (ND5); the same homoplasmic mutation was also identified in a human colorectal cancer cell line earlier. With increasing mutant ND5 mtDNA content, respiratory function including oxygen consumption and ATP generation through oxidative phosphorylation declined progressively, while lactate production and dependence on glucose increased. Interestingly, the reactive oxygen species (ROS) levels and apoptosis exhibited antagonistic pleiotropy associated with mitochondrial defects. Furthermore, the anchorage-dependence phenotype and tumor-forming capacity of cells carrying wild-type and mutant mtDNA were tested by growth assay in soft agar and subcutaneous implantation of the cells in nude mice. Surprisingly, the cell line carrying the heteroplasmic ND5 mtDNA mutation showed significantly enhanced tumor growth, while cells with homoplasmic form of the same mutation inhibited tumor formation. Similar results were obtained from the analysis of a series of mouse cell lines carrying a nonsense mutation at ND5 gene. Our results indicate that the mtDNA mutations might play an important role in the early stage of cancer development, possibly through alteration of ROS generation and apoptosis.


Assuntos
Apoptose , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Proteínas Mitocondriais/genética , Mutação , NADH Desidrogenase/genética , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/metabolismo , Neoplasias/genética , Neoplasias/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA