Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(2): 409-427.e19, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242086

RESUMO

Certain memories resist extinction to continue invigorating maladaptive actions. The robustness of these memories could depend on their widely distributed implementation across populations of neurons in multiple brain regions. However, how dispersed neuronal activities are collectively organized to underpin a persistent memory-guided behavior remains unknown. To investigate this, we simultaneously monitored the prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and ventral tegmental area (VTA) of the mouse brain from initial recall to post-extinction renewal of a memory involving cocaine experience. We uncover a higher-order pattern of short-lived beta-frequency (15-25 Hz) activities that are transiently coordinated across these networks during memory retrieval. The output of a divergent pathway from upstream VTA glutamatergic neurons, paced by a slower (4-Hz) oscillation, actuates this multi-network beta-band coactivation; its closed-loop phase-informed suppression prevents renewal of cocaine-biased behavior. Binding brain-distributed neural activities in this temporally structured manner may constitute an organizational principle of robust memory expression.


Assuntos
Encéfalo , Memória , Animais , Camundongos , Tonsila do Cerebelo/fisiologia , Encéfalo/fisiologia , Cocaína/farmacologia , Cocaína/metabolismo , Memória/fisiologia , Córtex Pré-Frontal/fisiologia
2.
Cell ; 176(6): 1393-1406.e16, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773318

RESUMO

Retrieving and acting on memories of food-predicting environments are fundamental processes for animal survival. Hippocampal pyramidal cells (PYRs) of the mammalian brain provide mnemonic representations of space. Yet the substrates by which these hippocampal representations support memory-guided behavior remain unknown. Here, we uncover a direct connection from dorsal CA1 (dCA1) hippocampus to nucleus accumbens (NAc) that enables the behavioral manifestation of place-reward memories. By monitoring neuronal ensembles in mouse dCA1→NAc pathway, combined with cell-type selective optogenetic manipulations of input-defined postsynaptic neurons, we show that dCA1 PYRs drive NAc medium spiny neurons and orchestrate their spiking activity using feedforward inhibition mediated by dCA1-connected parvalbumin-expressing fast-spiking interneurons. This tripartite cross-circuit motif supports spatial appetitive memory and associated NAc assemblies, being independent of dorsal subiculum and dispensable for both spatial novelty detection and reward seeking. Our findings demonstrate that the dCA1→NAc pathway instantiates a limbic-motor interface for neuronal representations of space to promote effective appetitive behavior.


Assuntos
Comportamento Apetitivo/fisiologia , Memória/fisiologia , Núcleo Accumbens/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Células HEK293 , Hipocampo/fisiologia , Humanos , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Células Piramidais/fisiologia , Recompensa , Lobo Temporal/fisiologia
3.
Brain ; 146(7): 2766-2779, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36730026

RESUMO

The parkinsonian gait disorder and freezing of gait are therapeutically demanding symptoms with considerable impact on quality of life. The aim of this study was to assess the role of subthalamic and nigral neurons in the parkinsonian gait control using intraoperative microelectrode recordings of basal ganglia neurons during a supine stepping task. Twelve male patients (56 ± 7 years) suffering from moderate idiopathic Parkinson's disease (disease duration 10 ± 3 years, Hoehn and Yahr stage 2), undergoing awake neurosurgery for deep brain stimulation, participated in the study. After 10 s resting, stepping at self-paced speed for 35 s was followed by short intervals of stepping in response to random 'start' and 'stop' cues. Single- and multi-unit activity was analysed offline in relation to different aspects of the stepping task (attentional 'start' and 'stop' cues, heel strikes, stepping irregularities) in terms of firing frequency, firing pattern and oscillatory activity. Subthalamic nucleus and substantia nigra neurons responded to different aspects of the stepping task. Of the subthalamic nucleus neurons, 24% exhibited movement-related activity modulation as an increase of the firing rate, suggesting a predominant role of the subthalamic nucleus in motor aspects of the task, while 8% of subthalamic nucleus neurons showed a modulation in response to the attentional cues. In contrast, responsive substantia nigra neurons showed activity changes exclusively associated with attentional aspects of the stepping task (15%). The firing pattern of subthalamic nucleus neurons revealed gait-related firing regularization and a drop of beta oscillations during the stepping performance. During freezing episodes instead, there was a rise of beta oscillatory activity. This study shows for the first time specific, task-related subthalamic nucleus and substantia nigra single-unit activity changes during gait-like movements in humans with differential roles in motor and attentional control of gait. The emergence of perturbed firing patterns in the subthalamic nucleus indicates a disrupted information transfer within the gait network, resulting in freezing of gait.


Assuntos
Estimulação Encefálica Profunda , Transtornos Neurológicos da Marcha , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Masculino , Estimulação Encefálica Profunda/métodos , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Neurônios/fisiologia , Doença de Parkinson/terapia , Qualidade de Vida , Substância Negra
4.
PLoS Comput Biol ; 18(3): e1009887, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245281

RESUMO

Synchronization of neural oscillations is thought to facilitate communication in the brain. Neurodegenerative pathologies such as Parkinson's disease (PD) can result in synaptic reorganization of the motor circuit, leading to altered neuronal dynamics and impaired neural communication. Treatments for PD aim to restore network function via pharmacological means such as dopamine replacement, or by suppressing pathological oscillations with deep brain stimulation. We tested the hypothesis that brain stimulation can operate beyond a simple "reversible lesion" effect to augment network communication. Specifically, we examined the modulation of beta band (14-30 Hz) activity, a known biomarker of motor deficits and potential control signal for stimulation in Parkinson's. To do this we setup a neural mass model of population activity within the cortico-basal ganglia-thalamic (CBGT) circuit with parameters that were constrained to yield spectral features comparable to those in experimental Parkinsonism. We modulated the connectivity of two major pathways known to be disrupted in PD and constructed statistical summaries of the spectra and functional connectivity of the resulting spontaneous activity. These were then used to assess the network-wide outcomes of closed-loop stimulation delivered to motor cortex and phase locked to subthalamic beta activity. Our results demonstrate that the spatial pattern of beta synchrony is dependent upon the strength of inputs to the STN. Precisely timed stimulation has the capacity to recover network states, with stimulation phase inducing activity with distinct spectral and spatial properties. These results provide a theoretical basis for the design of the next-generation brain stimulators that aim to restore neural communication in disease.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Gânglios da Base/fisiologia , Estimulação Encefálica Profunda/métodos , Humanos , Córtex Motor/fisiologia , Neurônios/fisiologia , Doença de Parkinson/terapia , Tálamo/fisiologia
5.
J Neurosci ; 41(50): 10382-10404, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753740

RESUMO

The cerebral cortex, basal ganglia and motor thalamus form circuits important for purposeful movement. In Parkinsonism, basal ganglia neurons often exhibit dysrhythmic activity during, and with respect to, the slow (∼1 Hz) and beta-band (15-30 Hz) oscillations that emerge in cortex in a brain state-dependent manner. There remains, however, a pressing need to elucidate the extent to which motor thalamus activity becomes similarly dysrhythmic after dopamine depletion relevant to Parkinsonism. To address this, we recorded single-neuron and ensemble outputs in the basal ganglia-recipient zone (BZ) and cerebellar-recipient zone (CZ) of motor thalamus in anesthetized male dopamine-intact rats and 6-OHDA-lesioned rats during two brain states, respectively defined by cortical slow-wave activity and activation. Two forms of thalamic input zone-selective dysrhythmia manifested after dopamine depletion: (1) BZ neurons, but not CZ neurons, exhibited abnormal phase-shifted firing with respect to cortical slow oscillations prevalent during slow-wave activity; and (2) BZ neurons, but not CZ neurons, inappropriately synchronized their firing and engaged with the exaggerated cortical beta oscillations arising in activated states. These dysrhythmias were not accompanied by the thalamic hypoactivity predicted by canonical firing rate-based models of circuit organization in Parkinsonism. Complementary recordings of neurons in substantia nigra pars reticulata suggested that their altered activity dynamics could underpin the BZ dysrhythmias. Finally, pharmacological perturbations demonstrated that ongoing activity in the motor thalamus bolsters exaggerated beta oscillations in motor cortex. We conclude that BZ neurons are selectively primed to mediate the detrimental influences of abnormal slow and beta-band rhythms on circuit information processing in Parkinsonism.SIGNIFICANCE STATEMENT Motor thalamus neurons mediate the influences of basal ganglia and cerebellum on the cerebral cortex to govern movement. Chronic depletion of dopamine from the basal ganglia causes some symptoms of Parkinson's disease. Here, we elucidate how dopamine depletion alters the ways motor thalamus neurons engage with two distinct oscillations emerging in cortico-basal ganglia circuits in vivo We discovered that, after dopamine depletion, neurons in the thalamic zone receiving basal ganglia inputs are particularly prone to becoming dysrhythmic, changing the phases and/or synchronization (but not rate) of their action potential firing. This bolsters cortical dysrhythmia. Our results provide important new insights into how aberrant rhythmicity in select parts of motor thalamus could detrimentally affect neural circuit dynamics and behavior in Parkinsonism.


Assuntos
Dopamina/deficiência , Neurônios/fisiologia , Transtornos Parkinsonianos/fisiopatologia , Tálamo/fisiopatologia , Animais , Masculino , Ratos
6.
Proc Natl Acad Sci U S A ; 116(32): 16095-16104, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31341079

RESUMO

Beta frequency oscillations (15 to 35 Hz) in cortical and basal ganglia circuits become abnormally synchronized in Parkinson's disease (PD). How excessive beta oscillations emerge in these circuits is unclear. We addressed this issue by defining the firing properties of basal ganglia neurons around the emergence of cortical beta bursts (ß bursts), transient (50 to 350 ms) increases in the beta amplitude of cortical signals. In PD patients, the phase locking of background spiking activity in the subthalamic nucleus (STN) to frontal electroencephalograms preceded the onset and followed the temporal profile of cortical ß bursts, with conditions of synchronization consistent within and across bursts. Neuronal ensemble recordings in multiple basal ganglia structures of parkinsonian rats revealed that these dynamics were recapitulated in STN, but also in external globus pallidus and striatum. The onset of consistent phase-locking conditions was preceded by abrupt phase slips between cortical and basal ganglia ensemble signals. Single-unit recordings demonstrated that ensemble-level properties of synchronization were not underlain by changes in firing rate but, rather, by the timing of action potentials in relation to cortical oscillation phase. Notably, the preferred angle of phase-locked action potential firing in each basal ganglia structure was shifted during burst initiation, then maintained stable phase relations during the burst. Subthalamic, pallidal, and striatal neurons engaged and disengaged with cortical ß bursts to different extents and timings. The temporal evolution of cortical and basal ganglia synchronization is cell type-selective, which could be key for the generation/ maintenance of excessive beta oscillations in parkinsonism.


Assuntos
Gânglios da Base/fisiopatologia , Ritmo beta/fisiologia , Córtex Cerebral/fisiopatologia , Doença de Parkinson/fisiopatologia , Potenciais de Ação , Idoso , Animais , Eletroencefalografia , Feminino , Humanos , Masculino , Neurônios/fisiologia , Ratos , Fatores de Tempo
7.
J Neurosci ; 39(6): 1119-1134, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30552179

RESUMO

Synchronized oscillations within and between brain areas facilitate normal processing, but are often amplified in disease. A prominent example is the abnormally sustained beta-frequency (∼20 Hz) oscillations recorded from the cortex and subthalamic nucleus of Parkinson's disease patients. Computational modeling suggests that the amplitude of such oscillations could be modulated by applying stimulation at a specific phase. Such a strategy would allow selective targeting of the oscillation, with relatively little effect on other activity parameters. Here, activity was recorded from 10 awake, parkinsonian patients (6 male, 4 female human subjects) undergoing functional neurosurgery. We demonstrate that stimulation arriving on a particular patient-specific phase of the beta oscillation over consecutive cycles could suppress the amplitude of this pathophysiological activity by up to 40%, while amplification effects were relatively weak. Suppressive effects were accompanied by a reduction in the rhythmic output of subthalamic nucleus (STN) neurons and synchronization with the mesial cortex. While stimulation could alter the spiking pattern of STN neurons, there was no net effect on firing rate, suggesting that reduced beta synchrony was a result of alterations to the relative timing of spiking activity, rather than an overall change in excitability. Together, these results identify a novel intrinsic property of cortico-basal ganglia synchrony that suggests the phase of ongoing neural oscillations could be a viable and effective control signal for the treatment of Parkinson's disease. This work has potential implications for other brain diseases with exaggerated neuronal synchronization and for probing the function of rhythmic activity in the healthy brain.SIGNIFICANCE STATEMENT In Parkinson's disease (PD), movement impairment is correlated with exaggerated beta frequency oscillations in the cerebral cortex and subthalamic nucleus (STN). Using a novel method of stimulation in PD patients undergoing neurosurgery, we demonstrate that STN beta oscillations can be suppressed when consecutive electrical pulses arrive at a specific phase of the oscillation. This effect is likely because of interrupting the timing of neuronal activity rather than excitability, as stimulation altered the firing pattern of STN spiking without changing overall rate. These findings show the potential of oscillation phase as an input for "closed-loop" stimulation, which could provide a valuable neuromodulation strategy for the treatment of brain disorders and for elucidating the role of neuronal oscillations in the healthy brain.


Assuntos
Ritmo beta , Doença de Parkinson/fisiopatologia , Idoso , Córtex Cerebral/citologia , Córtex Cerebral/fisiopatologia , Estimulação Encefálica Profunda , Estimulação Elétrica , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/fisiologia , Procedimentos Neurocirúrgicos , Doença de Parkinson/psicologia , Doença de Parkinson/cirurgia , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/fisiopatologia
8.
Neurobiol Dis ; 146: 105119, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991998

RESUMO

Abnormally sustained beta-frequency synchronisation between the motor cortex and subthalamic nucleus (STN) is associated with motor symptoms in Parkinson's disease (PD). It is currently unclear whether STN neurons have a preference for beta-frequency input (12-35 Hz), rather than cortical input at other frequencies, and how such a preference would arise following dopamine depletion. To address this question, we combined analysis of cortical and STN recordings from awake human PD patients undergoing deep brain stimulation surgery with recordings of identified STN neurons in anaesthetised rats. In these patients, we demonstrate that a subset of putative STN neurons is strongly and selectively sensitive to magnitude fluctuations of cortical beta oscillations over time, linearly increasing their phase-locking strength with respect to the full range of instantaneous amplitude in the beta-frequency range. In rats, we probed the frequency response of STN neurons in the cortico-basal-ganglia-network more precisely, by recording spikes evoked by short bursts of cortical stimulation with variable frequency (4-40 Hz) and constant amplitude. In both healthy and dopamine-depleted rats, only beta-frequency stimulation led to a progressive reduction in the variability of spike timing through the stimulation train. This suggests, that the interval of beta-frequency input provides an optimal window for eliciting the next spike with high fidelity. We hypothesize, that abnormal activation of the indirect pathway, via dopamine depletion and/or cortical stimulation, could trigger an underlying sensitivity of the STN microcircuit to beta-frequency input.


Assuntos
Comportamento Animal/fisiologia , Ritmo beta/fisiologia , Estimulação Encefálica Profunda , Córtex Motor/fisiopatologia , Doença de Parkinson/fisiopatologia , Animais , Estimulação Encefálica Profunda/métodos , Neurônios/fisiologia , Doença de Parkinson/terapia , Ratos , Núcleo Subtalâmico/fisiologia , Núcleo Subtalâmico/fisiopatologia
9.
Neuroimage ; 193: 103-114, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30862535

RESUMO

Parkinson's disease (PD) is a neurodegenerative condition in which aberrant oscillatory synchronization of neuronal activity at beta frequencies (15-35 Hz) across the cortico-basal ganglia-thalamocortical circuit is associated with debilitating motor symptoms, such as bradykinesia and rigidity. Mounting evidence suggests that the magnitude of beta synchrony in the parkinsonian state fluctuates over time, but the mechanisms by which thalamocortical circuitry regulates the dynamic properties of cortical beta in PD are poorly understood. Using the recently developed generic Dynamic Causal Modelling (DCM) framework, we recursively optimized a set of plausible models of the thalamocortical circuit (n = 144) to infer the neural mechanisms that best explain the transitions between low and high beta power states observed in recordings of field potentials made in the motor cortex of anesthetized Parkinsonian rats. Bayesian model comparison suggests that upregulation of cortical rhythmic activity in the beta-frequency band results from changes in the coupling strength both between and within the thalamus and motor cortex. Specifically, our model indicates that high levels of cortical beta synchrony are mainly achieved by a delayed (extrinsic) input from thalamic relay cells to deep pyramidal cells and a fast (intrinsic) input from middle pyramidal cells to superficial pyramidal cells. From a clinical perspective, our study provides insights into potential therapeutic strategies that could be utilized to modulate the network mechanisms responsible for the enhancement of cortical beta in PD. Specifically, we speculate that cortical stimulation aimed to reduce the enhanced excitatory inputs to either the superficial or deep pyramidal cells could be a potential non-invasive therapeutic strategy for PD.


Assuntos
Ritmo beta/fisiologia , Modelos Neurológicos , Córtex Motor/fisiopatologia , Transtornos Parkinsonianos/fisiopatologia , Tálamo/fisiopatologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
10.
Neurobiol Dis ; 127: 101-113, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30753889

RESUMO

Both phase-amplitude coupling (PAC) and beta-bursts in the subthalamic nucleus have been significantly linked to symptom severity in Parkinson's disease (PD) in humans and emerged independently as competing biomarkers for closed-loop deep brain stimulation (DBS). However, the underlying nature of subthalamic PAC is poorly understood and its relationship with transient beta burst-events has not been investigated. To address this, we studied macro- and micro electrode recordings of local field potentials (LFPs) and single unit activity from 15 hemispheres in 10 PD patients undergoing DBS surgery. PAC between beta phase and high frequency oscillation (HFO) amplitude was compared to single unit firing rates, spike triggered averages, power spectral densities, inter spike intervals and phase-spike locking, and was studied in periods of beta-bursting. We found a significant synchronisation of spiking to HFOs and correlation of mean firing rates with HFO-amplitude when the latter was coupled to beta phase (i.e. in the presence of PAC). In the presence of PAC, single unit power spectra displayed peaks in the beta and HFO frequency range and the HFO frequency was correlated with that in the LFP. Furthermore, inter spike interval frequencies peaked in the same frequencies for which PAC was observed. Finally, PAC significantly increased with beta burst-duration. Our findings offer new insight in the pathology of Parkinson's disease by providing evidence that subthalamic PAC reflects the locking of spiking activity to network beta oscillations and that this coupling progressively increases with beta-burst duration. These findings suggest that beta-bursts capture periods of increased subthalamic input/output synchronisation in the beta frequency range and have important implications for therapeutic closed-loop DBS. SIGNIFICANCE STATEMENT: Identifying biomarkers for closed-loop deep brain stimulation (DBS) has become an increasingly important issue in Parkinson's Disease (PD) research. Two such biomarkers, phase-amplitude coupling (PAC) and beta-bursts, recorded from the implanted electrodes in subthalamic nucleus in PD patients, correlate with motor impairment. However, the physiological basis of PAC, and it relationship to beta bursts, is unclear. We provide multiple lines of evidence that PAC in the human STN reflects the locking of spiking activity to network beta oscillations and that this coupling progressively increases with the duration of beta-bursts. This suggests that beta-bursts capture increased subthalamic input/output synchronisation and provides new insights in PD pathology with direct implications for closed-loop DBS therapy strategies.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Idoso , Estimulação Encefálica Profunda , Eletroencefalografia , Feminino , Humanos , Masculino , Microeletrodos , Pessoa de Meia-Idade , Doença de Parkinson/terapia
11.
J Neurosci ; 37(41): 9977-9998, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28847810

RESUMO

Classical schemes of basal ganglia organization posit that parkinsonian movement difficulties presenting after striatal dopamine depletion stem from the disproportionate firing rates of spiny projection neurons (SPNs) therein. There remains, however, a pressing need to elucidate striatal SPN firing in the context of the synchronized network oscillations that are abnormally exaggerated in cortical-basal ganglia circuits in parkinsonism. To address this, we recorded unit activities in the dorsal striatum of dopamine-intact and dopamine-depleted rats during two brain states, respectively defined by cortical slow-wave activity (SWA) and activation. Dopamine depletion escalated striatal net output but had contrasting effects on "direct pathway" SPNs (dSPNs) and "indirect pathway" SPNs (iSPNs); their firing rates became imbalanced, and they disparately engaged in network oscillations. Disturbed striatal activity dynamics relating to the slow (∼1 Hz) oscillations prevalent during SWA partly generalized to the exaggerated beta-frequency (15-30 Hz) oscillations arising during cortical activation. In both cases, SPNs exhibited higher incidences of phase-locked firing to ongoing cortical oscillations, and SPN ensembles showed higher levels of rhythmic correlated firing, after dopamine depletion. Importantly, in dopamine-depleted striatum, a widespread population of iSPNs, which often displayed excessive firing rates and aberrant phase-locked firing to cortical beta oscillations, preferentially and excessively synchronized their firing at beta frequencies. Conversely, dSPNs were neither hyperactive nor synchronized to a large extent during cortical activation. These data collectively demonstrate a cell type-selective entrainment of SPN firing to parkinsonian beta oscillations. We conclude that a population of overactive, excessively synchronized iSPNs could orchestrate these pathological rhythms in basal ganglia circuits.SIGNIFICANCE STATEMENT Chronic depletion of dopamine from the striatum, a part of the basal ganglia, causes some symptoms of Parkinson's disease. Here, we elucidate how dopamine depletion alters striatal neuron firing in vivo, with an emphasis on defining whether and how spiny projection neurons (SPNs) engage in the synchronized beta-frequency (15-30 Hz) oscillations that become pathologically exaggerated throughout basal ganglia circuits in parkinsonism. We discovered that a select population of so-called "indirect pathway" SPNs not only fire at abnormally high rates, but are also particularly prone to being recruited to exaggerated beta oscillations. Our results provide an important link between two complementary theories that explain the presentation of disease symptoms on the basis of changes in firing rate or firing synchronization/rhythmicity.


Assuntos
Ritmo beta , Corpo Estriado/fisiopatologia , Vias Neurais/fisiopatologia , Neurônios/patologia , Transtornos Parkinsonianos/fisiopatologia , Animais , Gânglios da Base/fisiopatologia , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Corpo Estriado/patologia , Dopamina/metabolismo , Hidroxidopaminas , Masculino , Vias Neurais/patologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Ratos , Ratos Sprague-Dawley
12.
J Neurophysiol ; 119(5): 1608-1628, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357448

RESUMO

Much of the motor impairment associated with Parkinson's disease is thought to arise from pathological activity in the networks formed by the basal ganglia (BG) and motor cortex. To evaluate several hypotheses proposed to explain the emergence of pathological oscillations in parkinsonism, we investigated changes to the directed connectivity in BG networks following dopamine depletion. We recorded local field potentials (LFPs) in the cortex and basal ganglia of rats rendered parkinsonian by injection of 6-hydroxydopamine (6-OHDA) and in dopamine-intact controls. We performed systematic analyses of the networks using a novel tool for estimation of directed interactions (nonparametric directionality, NPD). We used a "conditioned" version of the NPD analysis that reveals the dependence of the correlation between two signals on a third reference signal. We find evidence of the dopamine dependency of both low-beta (14-20 Hz) and high-beta/low-gamma (20-40 Hz) directed network interactions. Notably, 6-OHDA lesions were associated with enhancement of the cortical "hyperdirect" connection to the subthalamic nucleus (STN) and its feedback to the cortex and striatum. We find that pathological beta synchronization resulting from 6-OHDA lesioning is widely distributed across the network and cannot be located to any individual structure. Furthermore, we provide evidence that high-beta/gamma oscillations propagate through the striatum in a pathway that is independent of STN. Rhythms at high beta/gamma show susceptibility to conditioning that indicates a hierarchical organization compared with those at low beta. These results further inform our understanding of the substrates for pathological rhythms in salient brain networks in parkinsonism. NEW & NOTEWORTHY We present a novel analysis of electrophysiological recordings in the cortico-basal ganglia network with the aim of evaluating several hypotheses concerning the origins of abnormal brain rhythms associated with Parkinson's disease. We present evidence for changes in the directed connections within the network following chronic dopamine depletion in rodents. These findings speak to the plausibility of a "short-circuiting" of the network that gives rise to the conditions from which pathological synchronization may arise.


Assuntos
Gânglios da Base/fisiopatologia , Ritmo beta/fisiologia , Córtex Cerebral/fisiopatologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Eletroencefalografia/métodos , Ritmo Gama/fisiologia , Rede Nervosa/fisiopatologia , Transtornos Parkinsonianos/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Animais , Modelos Animais de Doenças , Masculino , Oxidopamina/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Sprague-Dawley
13.
Neurobiol Dis ; 112: 49-62, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29307661

RESUMO

Pathological synchronisation of beta frequency (12-35Hz) oscillations between the subthalamic nucleus (STN) and cerebral cortex is thought to contribute to motor impairment in Parkinson's disease (PD). For this cortico-subthalamic oscillatory drive to be mechanistically important, it must influence the firing of STN neurons and, consequently, their downstream targets. Here, we examined the dynamics of synchronisation between STN LFPs and units with multiple cortical areas, measured using frontal ECoG, midline EEG and lateral EEG, during rest and movement. STN neurons lagged cortical signals recorded over midline (over premotor cortices) and frontal (over prefrontal cortices) with stable time delays, consistent with strong corticosubthalamic drive, and many neurons maintained these dynamics during movement. In contrast, most STN neurons desynchronised from lateral EEG signals (over primary motor cortices) during movement and those that did not had altered phase relations to the cortical signals. The strength of synchronisation between STN units and midline EEG in the high beta range (25-35Hz) correlated positively with the severity of akinetic-rigid motor symptoms across patients. Together, these results suggest that sustained synchronisation of STN neurons to premotor-cortical beta oscillations play an important role in disrupting the normal coding of movement in PD.


Assuntos
Ritmo beta/fisiologia , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/fisiologia , Idoso , Ritmo beta/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Estimulação Encefálica Profunda/métodos , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/uso terapêutico , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Doença de Parkinson/terapia , Núcleo Subtalâmico/efeitos dos fármacos , Fatores de Tempo
14.
J Neurosci ; 35(17): 6667-88, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25926446

RESUMO

Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called "prototypic" and "arkypallidal" neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a "persistent" sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe.


Assuntos
Dopamina/metabolismo , Globo Pálido/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Núcleo Subtalâmico/citologia , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Adrenérgicos/toxicidade , Animais , Animais Recém-Nascidos , Proteínas ELAV/metabolismo , Proteína Semelhante a ELAV 3 , Feminino , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Oxidopamina/toxicidade , Parvalbuminas/metabolismo , Ratos , Estatísticas não Paramétricas , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo
15.
J Neurosci ; 34(8): 3101-17, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24553950

RESUMO

Cholinergic interneurons are key components of striatal microcircuits. In primates, tonically active neurons (putative cholinergic interneurons) exhibit multiphasic responses to motivationally salient stimuli that mirror those of midbrain dopamine neurons and together these two systems mediate reward-related learning in basal ganglia circuits. Here, we addressed the potential contribution of cortical and thalamic excitatory inputs to the characteristic multiphasic responses of cholinergic interneurons in vivo. We first recorded and labeled individual cholinergic interneurons in anesthetized rats. Electron microscopic analyses of these labeled neurons demonstrated that an individual interneuron could form synapses with cortical and, more commonly, thalamic afferents. Single-pulse electrical stimulation of ipsilateral frontal cortex led to robust short-latency (<20 ms) interneuron spiking, indicating monosynaptic connectivity, but firing probability progressively decreased during high-frequency pulse trains. In contrast, single-pulse thalamic stimulation led to weak short-latency spiking, but firing probability increased during pulse trains. After initial excitation from cortex or thalamus, interneurons displayed a "pause" in firing, followed by a "rebound" increase in firing rate. Across all stimulation protocols, the number of spikes in the initial excitation correlated positively with pause duration and negatively with rebound magnitude. The magnitude of the initial excitation, therefore, partly determined the profile of later components of multiphasic responses. Upon examining the responses of tonically active neurons in behaving primates, we found that these correlations held true for unit responses to a reward-predicting stimulus, but not to the reward alone, delivered outside of any task. We conclude that excitatory inputs determine, at least in part, the multiphasic responses of cholinergic interneurons under specific behavioral conditions.


Assuntos
Córtex Cerebral/fisiologia , Interneurônios/fisiologia , Motivação/fisiologia , Neostriado/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Tálamo/fisiologia , Animais , Interpretação Estatística de Dados , Estimulação Elétrica , Fenômenos Eletrofisiológicos/fisiologia , Imuno-Histoquímica , Macaca mulatta , Masculino , Microscopia Eletrônica , Vias Neurais/citologia , Vias Neurais/fisiologia , Sistema Nervoso Parassimpático/citologia , Ratos , Ratos Sprague-Dawley , Recompensa , Sinapses/fisiologia
16.
J Neurosci ; 34(17): 5938-48, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24760853

RESUMO

The corticostriatal axis is the main input stage of the basal ganglia and is crucial for their role in motor behavior. Synchronized oscillations might mediate interactions between cortex and striatum during behavior, yet direct evidence remains sparse. Here, we show that, during motor behavior, low- and high-frequency oscillations jointly couple cortex and striatum via cross-frequency interactions. We investigated neuronal oscillations along the corticostriatal axis in rats during rest and treadmill running. We found prominent theta and gamma oscillations in cortex and striatum, the peak frequencies of which scaled with motor demand. Theta and gamma oscillations were functionally coupled through phase-amplitude coupling. Furthermore, theta oscillations were phase coupled between structures. Together, local phase-amplitude coupling and corticostriatal theta phase coupling mediated the temporal correlation of gamma bursts between the cortex and striatum. The coordination of fast oscillations through coherent phase-amplitude coupling may be a general mechanism to regulate neuronal interactions along the corticostriatal axis and beyond.


Assuntos
Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Neurônios/fisiologia , Condicionamento Físico Animal/fisiologia , Ritmo Teta/fisiologia , Animais , Masculino , Vias Neurais/fisiologia , Ratos
17.
J Neurosci ; 34(18): 6273-85, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24790198

RESUMO

Parkinson's disease (PD) is a heterogeneous disorder that leads to variable expression of several different motor symptoms. While changes in firing rate, pattern, and oscillation of basal ganglia neurons have been observed in PD patients and experimental animals, there is limited evidence linking them to specific motor symptoms. Here we examined this relationship using extracellular recordings of subthalamic nucleus neurons from 19 PD patients undergoing surgery for deep brain stimulation. For each patient, ≥ 10 single units and/or multi-units were recorded in the OFF medication state. We correlated the proportion of neurons displaying different activities with preoperative Unified Parkinson's Disease Rating Scale subscores (OFF medication). The mean spectral power at sub-beta frequencies and percentage of units oscillating at beta frequencies were positively correlated with the axial and limb rigidity scores, respectively. The percentage of units oscillating at gamma frequency was negatively correlated with the bradykinesia scores. The mean intraburst rate was positively correlated with both bradykinesia and axial scores, while the related ratio of interspike intervals below/above 10 ms was positively correlated with these symptoms and limb rigidity. None of the activity parameters correlated with tremor. The grand average of all the significantly correlated subthalamic nucleus activities accounted for >60% of the variance of the combined bradykinetic-rigid and axial scores. Our results demonstrate that the occurrence of alterations in the rate and pattern of basal ganglia neurons could partly underlie the variability in parkinsonian phenotype.


Assuntos
Potenciais de Ação/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico/patologia , Idoso , Ritmo beta/fisiologia , Estimulação Encefálica Profunda , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Regressão , Índice de Gravidade de Doença , Técnicas Estereotáxicas , Núcleo Subtalâmico/fisiologia
18.
Cereb Cortex ; 24(1): 81-97, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23042738

RESUMO

Neurons of the motor thalamus mediate basal ganglia and cerebellar influences on cortical activity. To elucidate the net result of γ-aminobutyric acid-releasing or glutamatergic bombardment of the motor thalamus by basal ganglia or cerebellar afferents, respectively, we recorded the spontaneous activities of thalamocortical neurons in distinct identified "input zones" in anesthetized rats during defined cortical activity states. Unexpectedly, the mean rates and brain state dependencies of the firing of neurons in basal ganglia-recipient zone (BZ) and cerebellar-recipient zone (CZ) were matched during slow-wave activity (SWA) and cortical activation. However, neurons were distinguished during SWA by their firing regularities, low-threshold spike bursts and, more strikingly, by the temporal coupling of their activities to ongoing cortical oscillations. The firing of neurons across the BZ was stronger and more precisely phase-locked to cortical slow (≈ 1 Hz) oscillations, although both neuron groups preferentially fired at the same phase. In contrast, neurons in BZ and CZ fired at different phases of cortical spindles (7-12 Hz), but with similar strengths of coupled firing. Thus, firing rates do not reflect the predicted inhibitory-excitatory imbalance across the motor thalamus, and input zone-specific temporal coding through oscillatory synchronization with the cortex could partly mediate the different roles of basal ganglia and cerebellum in behavior.


Assuntos
Gânglios da Base/fisiologia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Algoritmos , Animais , Sinalização do Cálcio/fisiologia , Interpretação Estatística de Dados , Fenômenos Eletrofisiológicos , Imunofluorescência , Glutamatos/fisiologia , Masculino , Rede Nervosa/fisiologia , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Sprague-Dawley
19.
Eur J Neurosci ; 39(11): 1951-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24890470

RESUMO

Oscillatory activity in the beta (13-30 Hz) frequency band is widespread in cortico-basal ganglia circuits, and becomes prominent in Parkinson's disease (PD). Here we develop the hypothesis that the degree of synchronization in this frequency band is a critical factor in gating computation across a population of neurons, with increases in beta band synchrony entailing a loss of information-coding space and hence computational capacity. Task and context drive this dynamic gating, so that for each state there will be an optimal level of network synchrony, and levels lower or higher than this will impair behavioural performance. Thus, both the pathological exaggeration of synchrony, as observed in PD, and the ability of interventions like deep brain stimulation (DBS) to excessively suppress synchrony can potentially lead to impairments in behavioural performance. Indeed, under physiological conditions, the manipulation of computational capacity by beta activity may itself present a mechanism of action selection and maintenance.


Assuntos
Gânglios da Base/fisiologia , Ritmo beta , Córtex Cerebral/fisiologia , Doença de Parkinson/fisiopatologia , Gânglios da Base/fisiopatologia , Córtex Cerebral/fisiopatologia , Sincronização Cortical , Estimulação Encefálica Profunda , Humanos , Doença de Parkinson/terapia
20.
Transl Psychiatry ; 14(1): 103, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378677

RESUMO

Deep brain stimulation (DBS) of the subcallosal cingulate cortex (SCC) is an experimental therapy for treatment-resistant depression (TRD). Chronic SCC DBS leads to long-term changes in the electrophysiological dynamics measured from local field potential (LFP) during wakefulness, but it is unclear how it impacts sleep-related brain activity. This is a crucial gap in knowledge, given the link between depression and sleep disturbances, and an emerging interest in the interaction between DBS, sleep, and circadian rhythms. We therefore sought to characterize changes in electrophysiological markers of sleep associated with DBS treatment for depression. We analyzed key electrophysiological signatures of sleep-slow-wave activity (SWA, 0.5-4.5 Hz) and sleep spindles-in LFPs recorded from the SCC of 9 patients who responded to DBS for TRD. This allowed us to compare the electrophysiological changes before and after 24 weeks of therapeutically effective SCC DBS. SWA power was highly correlated between hemispheres, consistent with a global sleep state. Furthermore, SWA occurred earlier in the night after chronic DBS and had a more prominent peak. While we found no evidence for changes to slow-wave power or stability, we found an increase in the density of sleep spindles. Our results represent a first-of-its-kind report on long-term electrophysiological markers of sleep recorded from the SCC in patients with TRD, and provides evidence of earlier NREM sleep and increased sleep spindle activity following clinically effective DBS treatment. Future work is needed to establish the causal relationship between long-term DBS and the neural mechanisms underlying sleep.


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Resistente a Tratamento , Humanos , Giro do Cíngulo/fisiologia , Depressão , Estimulação Encefálica Profunda/métodos , Sono , Transtorno Depressivo Resistente a Tratamento/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA