Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17088, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273492

RESUMO

Microbiomes are essential features of holobionts, providing their hosts with key metabolic and functional traits like resistance to environmental disturbances and diseases. In scleractinian corals, questions remain about the microbiome's role in resistance and resilience to factors contributing to the ongoing global coral decline and whether microbes serve as a form of holobiont ecological memory. To test if and how coral microbiomes affect host health outcomes during repeated disturbances, we conducted a large-scale (32 exclosures, 200 colonies, and 3 coral species sampled) and long-term (28 months, 2018-2020) manipulative experiment on the forereef of Mo'orea, French Polynesia. In 2019 and 2020, this reef experienced the two most severe marine heatwaves on record for the site. Our experiment and these events afforded us the opportunity to test microbiome dynamics and roles in the context of coral bleaching and mortality resulting from these successive and severe heatwaves. We report unique microbiome responses to repeated heatwaves in Acropora retusa, Porites lobata, and Pocillopora spp., which included: microbiome acclimatization in A. retusa, and both microbiome resilience to the first marine heatwave and microbiome resistance to the second marine heatwave in Pocillopora spp. Moreover, observed microbiome dynamics significantly correlated with coral species-specific phenotypes. For example, bleaching and mortality in A. retusa both significantly increased with greater microbiome beta dispersion and greater Shannon Diversity, while P. lobata colonies had different microbiomes across mortality prevalence. Compositional microbiome changes, such as changes to proportions of differentially abundant putatively beneficial to putatively detrimental taxa to coral health outcomes during repeated heat stress, also correlated with host mortality, with higher proportions of detrimental taxa yielding higher mortality in A. retusa. This study reveals evidence for coral species-specific microbial responses to repeated heatwaves and, importantly, suggests that host-dependent microbiome dynamics may provide a form of holobiont ecological memory to repeated heat stress.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Branqueamento de Corais , Antozoários/fisiologia , Resposta ao Choque Térmico
2.
Ann Surg ; 277(4): e817-e824, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129506

RESUMO

OBJECTIVE: We aimed to examine associations between the oral, fecal, and mucosal microbiome communities and adenoma formation. SUMMARY BACKGROUND DATA: Data are limited regarding the relationships between microbiota and preneoplastic colorectal lesions. METHODS: Individuals undergoing screening colonoscopy were prospectively enrolled and divided into adenoma and nonadenoma formers. Oral, fecal, nonadenoma and adenoma-adjacent mucosa were collected along with clinical and dietary information. 16S rRNA gene libraries were generated using V4 primers. DADA2 processed sequence reads and custom R-scripts quantified microbial diversity. Linear regression identified differential taxonomy and diversity in microbial communities and machine learning identified adenoma former microbial signatures. RESULTS: One hundred four subjects were included, 46% with adenomas. Mucosal and fecal samples were dominated by Firmicutes and Bacteroidetes whereas Firmicutes and Proteobacteria were most abundant in oral communities. Mucosal communities harbored significant microbial diversity that was not observed in fecal or oral communities. Random forest classifiers predicted adenoma formation using fecal, oral, and mucosal amplicon sequence variant (ASV) abundances. The mucosal classifier reliably diagnosed adenoma formation with an area under the curve (AUC) = 0.993 and an out-of-bag (OOB) error of 3.2%. Mucosal classifier accuracy was strongly influenced by five taxa associated with the family Lachnospiraceae, genera Bacteroides and Marvinbryantia, and Blautia obeum. In contrast, classifiers built using fecal and oral samples manifested high OOB error rates (47.3% and 51.1%, respectively) and poor diagnostic abilities (fecal and oral AUC = 0.53). CONCLUSION: Normal mucosa microbial abundances of adenoma formers manifest unique patterns of microbial diversity that may be predictive of adenoma formation.


Assuntos
Adenoma , Microbioma Gastrointestinal , Humanos , Bactérias/genética , RNA Ribossômico 16S/genética , Adenosina Desaminase , Peptídeos e Proteínas de Sinalização Intercelular , Fezes/microbiologia , Adenoma/diagnóstico , Adenoma/microbiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37614078

RESUMO

Diet is an external factor that affects the physiological baseline of research animals. It can shape gut microbiome, which can impact the host. As a result, dietary variation can challenge experimental reproducibility and data integration across studies when not appropriately considered. To control for diet-induced variation, reference diets have been developed for common biomedical models. However, such reference diets have not yet been developed for nontraditional model organisms, such as Xiphophorus species. In this study, we compared two diets designed for zebrafish, a commercial zebrafish diet (Gemma and GEM), and a proposed zebrafish reference diet developed by the Watts laboratory at the University of Alabama at Birmingham (WAT) to the Xiphophorus Genetic Stock Center custom diet (CON) to evaluate the influence of diet on the Xiphophorus gut microbiome. Xiphophorus maculatus were fed the three diets from 2 to 6 months of age. Feces were collected and the gut microbiome was assessed using 16S rRNA sequencing every month. We observed substantial diet-driven variation in the gut microbiome. Our results indicate that diets developed specifically for zebrafish can affect the gut microbiome composition and may not be optimal for Xiphophorus.

4.
Int Microbiol ; 26(2): 423-434, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36484910

RESUMO

Ulcerative colitis (UC) and Crohn's disease (CD) are two major forms of inflammatory bowel disease (IBD). The disease has been linked with gut microbiota dysbiosis in which the balance of commensal communities is disrupted. Accumulating evidence demonstrates that treatment with biologically active compounds can modulate gut microbiota composition in animal models. Our previous work has also shown the beneficial effect of Luem Pua (LP) rice extract, which is rich in anthocyanins, on inflammation. However, its effect on gut microbiota is yet to be explored. In this study, we profiled fecal microbiota of acetic acid (AA)-induced UC and indomethacin (ID)-induced CD rat models with and without pretreatment with LP rice extract by 16S rRNA gene sequencing. The results showed that gut microbiota communities of rats were altered by both AA-induced UC and ID-induced CD. The relative abundances of beneficial bacteria, especially the Lachnospiraceae NK4A136 group and Lactobacillus, were decreased in the AA-induced UC model, while some opportunistic pathogens (Bacteroides, Escherichia/Shigella, Fusobacterium, and Veillonella) were raised by ID-induced CD. Interestingly, pretreatment with LP rice extract before AA-inducing UC in rats increased the proportion of the butyrate-producing bacteria (Lachnospiraceae NK4A136 group). The abundances of these beneficial bacteria and other SCFA-producing bacteria were unaffected by the indomethacin treatment with LP. Overall, our study revealed different impacts of AA-induced UC and ID-induced CD on changes in community composition and hinted at how LP may protect against UC by modifying the gut microbiota.


Assuntos
Colite Ulcerativa , Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Oryza , Animais , Ratos , Ácido Acético , Indometacina/farmacologia , RNA Ribossômico 16S/genética , Antocianinas , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/microbiologia , Doença de Crohn/microbiologia , Colite Ulcerativa/microbiologia , Bactérias/genética
5.
Semin Neurol ; 43(4): 634-644, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37607587

RESUMO

Increasing research links the gut microbiome to neurodegenerative disorders. The gut microbiome communicates with the central nervous system via the gut-brain axis and affects behavioral and cognitive phenotypes. Dysbiosis (a dysfunctional microbiome) drives increased intestinal permeability and inflammation that can negatively affect the brain via the gut-brain axis. Healthier metabolic and lipid profiles and cognitive phenotypes are observed in individuals with more distinct microbiomes. In this review, we discuss the role of the gut microbiome and gut-brain axis in neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease and related animal models, in cancer and cancer treatments, and in metabolic syndrome. We also discuss strategies to improve the gut microbiome and ultimately brain function. Because healthier cognitive phenotypes are observed in individuals with more distinct microbiomes, increased efforts are warranted to develop therapeutic strategies for those at increased risk of developing neurological disorders and patients diagnosed with those disorders.


Assuntos
Doença de Alzheimer , Gastroenteropatias , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Animais , Gastroenteropatias/etiologia
6.
J Fish Dis ; 46(6): 619-627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36821594

RESUMO

The intestinal nematode Pseudocapillaria tomentosa in zebrafish (Danio rerio) causes profound intestinal lesions, emaciation and death and is a promoter of a common intestinal cancer in zebrafish. This nematode has been detected in zebrafish from about 15% of the laboratories. Adult worms are readily detected about 3 weeks after exposure by either histology or wet mount preparations of the intestine, and larval worms are inconsistently observed in fish before this time. A quantitative PCR (qPCR) test was recently developed to detect the worm in fish and water, and here we determined that the test on zebrafish intestines was effective for earlier detection. Four lines of zebrafish (AB, TU, 5D and Casper) were experimentally infected and evaluated by wet mounts and qPCR at 8, 15-, 22-, 31- and 44-day post-exposure (dpe). At the first two time points, only 8% of the wet mounts from exposed fish were identified as infected, while the same intestines screened by qPCR showed 78% positivity, with low and consistent cycle threshold (Ct) values at these times. Wet mounts at later time points showed a high prevalence of infection, but this was still surpassed by qPCR.


Assuntos
Doenças dos Peixes , Nematoides , Animais , Peixe-Zebra , Doenças dos Peixes/diagnóstico , Intestinos , Reação em Cadeia da Polimerase
7.
Biometals ; 34(2): 291-301, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33392795

RESUMO

Age-related T cell dysfunction contributes to immunosenescence and chronic inflammation. Aging is also associated with a progressive decline in zinc status. Zinc is an essential micronutrient critical for immune function. A significant portion of the older populations are at risk for marginal zinc deficiency. The combined impact of dietary zinc deficiency and age on immune dysfunction has not been well explored despite the common occurrence together in the elderly population. We hypothesize that age-related zinc loss contributes to T cell dysfunction and chronic inflammation in the elderly and is exacerbated by inadequate dietary intake and improved with zinc supplementation. Using an aging mouse model, the effects of marginal zinc deficiency and zinc supplementation on Th1/Th17/proinflammatory cytokine profiles and CD4+ T cell naïve/memory phenotypes were examined. In the first study, young (2 months) and old (24 months) C57BL/6 mice were fed a zinc adequate (ZA) or marginally zinc deficient (MZD) diets for 6 weeks. In the second study, mice were fed a ZA or zinc supplemented (ZS) diet for 6 weeks. MZD old mice had significant increase in LPS-induced IL6 compared to ZA old mice. In contrast, ZS old mice had significantly reduced plasma MCP1 levels, reduced T cell activation-induced IFNγ, IL17, and TNFα response, as well as increased naïve CD4+ T-cell subset compared to ZA old mice. Our data suggest that zinc deficiency is an important contributing factor in immune aging, and improving zinc status can in part reverse immune dysfunction and reduce chronic inflammation associated with aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Inflamação/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Zinco/farmacologia , Animais , Doença Crônica , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Suplementos Nutricionais , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/metabolismo , Zinco/administração & dosagem , Zinco/sangue
8.
BMC Genomics ; 21(1): 153, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050897

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have roles in gene regulation, epigenetics, and molecular scaffolding and it is hypothesized that they underlie some mammalian evolutionary adaptations. However, for many mammalian species, the absence of a genome assembly precludes the comprehensive identification of lncRNAs. The genome of the American beaver (Castor canadensis) has recently been sequenced, setting the stage for the systematic identification of beaver lncRNAs and the characterization of their expression in various tissues. The objective of this study was to discover and profile polyadenylated lncRNAs in the beaver using high-throughput short-read sequencing of RNA from sixteen beaver tissues and to annotate the resulting lncRNAs based on their potential for orthology with known lncRNAs in other species. RESULTS: Using de novo transcriptome assembly, we found 9528 potential lncRNA contigs and 187 high-confidence lncRNA contigs. Of the high-confidence lncRNA contigs, 147 have no known orthologs (and thus are putative novel lncRNAs) and 40 have mammalian orthologs. The novel lncRNAs mapped to the Oregon State University (OSU) reference beaver genome with greater than 90% sequence identity. While the novel lncRNAs were on average shorter than their annotated counterparts, they were similar to the annotated lncRNAs in terms of the relationships between contig length and minimum free energy (MFE) and between coverage and contig length. We identified beaver orthologs of known lncRNAs such as XIST, MEG3, TINCR, and NIPBL-DT. We profiled the expression of the 187 high-confidence lncRNAs across 16 beaver tissues (whole blood, brain, lung, liver, heart, stomach, intestine, skeletal muscle, kidney, spleen, ovary, placenta, castor gland, tail, toe-webbing, and tongue) and identified both tissue-specific and ubiquitous lncRNAs. CONCLUSIONS: To our knowledge this is the first report of systematic identification of lncRNAs and their expression atlas in beaver. LncRNAs-both novel and those with known orthologs-are expressed in each of the beaver tissues that we analyzed. For some beaver lncRNAs with known orthologs, the tissue-specific expression patterns were phylogenetically conserved. The lncRNA sequence data files and raw sequence files are available via the web supplement and the NCBI Sequence Read Archive, respectively.


Assuntos
Perfilação da Expressão Gênica , RNA Longo não Codificante , Roedores/genética , Transcriptoma , Animais , Biologia Computacional/métodos , Regulação da Expressão Gênica , Genoma , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , Especificidade de Órgãos/genética
9.
Environ Microbiol ; 22(8): 3505-3521, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510835

RESUMO

Microbes and sunlight convert terrigenous dissolved organic matter (DOM) in surface waters to greenhouse gases. Prior studies show contrasting results about how biological and photochemical processes interact to contribute to the degradation of DOM. In this study, DOM leached from the organic layer of tundra soil was exposed to natural sunlight or kept in the dark, incubated in the dark with the natural microbial community, and analysed for gene expression and DOM chemical composition. Microbial gene expression (metatranscriptomics) in light and dark treatments diverged substantially after 4 h. Gene expression suggested that sunlight exposure of DOM initially stimulated microbial growth by (i) replacing the function of enzymes that degrade higher molecular weight DOM such as enzymes for aromatic carbon degradation, oxygenation, and decarboxylation, and (ii) releasing low molecular weight compounds and inorganic nutrients from DOM. However, growth stimulation following sunlight exposure of DOM came at a cost. Sunlight depleted the pool of aromatic compounds that supported microbial growth in the dark treatment, ultimately causing slower growth in the light treatment over 5 days. These first measurements of microbial metatranscriptomic responses to photo-alteration of DOM provide a mechanistic explanation for how sunlight exposure of terrigenous DOM alters microbial processing and respiration of DOM.


Assuntos
Bactérias/metabolismo , Água Doce/microbiologia , Compostos Orgânicos/metabolismo , Luz Solar , Bactérias/genética , Carbono/metabolismo , Análise Custo-Benefício , Perfilação da Expressão Gênica , Gases de Efeito Estufa/análise , Solo/química , Transcriptoma/genética
10.
J Fish Dis ; 42(10): 1351-1357, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31309582

RESUMO

Pseudocapillaria tomentosa is a pathogenic nematode parasite, causing emaciation and severe inflammatory lesions in the intestines in zebrafish Danio rerio (Hamilton 1822). Emamectin benzoate is commercially available analogue of ivermectin used for treating salmon for sea lice, under the brand name SLICE® , and we have used this for treating zebrafish with the P. tomentosa. Here, SLICE® , 0.2 per cent active emamectin benzoate, was used for oral treatments at 0.35 mg emamectin benzoate/kg fish/day for 14 days starting at 7 days post-exposure (dpe). Another experiment entailed initiating treatment during clinical disease (starting at 28 dpe). Early treatment was very effective, but delaying treatment was less so, presumably due to inappetence in clinically affected fish. We evaluated emamectin benzoate delivered in water, using Lice-Solve™ (mectinsol; 1.4% active emamectin benzoate) in two experiments. Application of four 24-hr treatments, space over 7 days was initiated at 28 dpe at either 0.168 or 0.56 mg emamectin benzoate/L/bath, and both treatments completely eradicated infections. This was 3 or 10 times manufacture's recommended dose, but was not associated with clinical or histological side effects.


Assuntos
Antinematódeos/farmacologia , Infecções por Enoplida/veterinária , Enoplídios/efeitos dos fármacos , Doenças dos Peixes/tratamento farmacológico , Ivermectina/análogos & derivados , Peixe-Zebra , Animais , Relação Dose-Resposta a Droga , Infecções por Enoplida/tratamento farmacológico , Feminino , Ivermectina/farmacologia , Masculino
11.
Dev Psychobiol ; 61(5): 783-795, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30690712

RESUMO

Gut microbial research has recently opened new frontiers in neuroscience and potentiated novel therapies for mental health problems (Mayer, et al., 2014). Much of our understanding of the gut microbiome's role in brain function and behavior, however, has been largely derived from research on nonhuman animals. Even less is known about how the development of the gut microbiome influences critical periods of neural and behavioral development, particularly adolescence. In this review, we first discuss why the gut microbiome has become increasingly relevant to developmental cognitive neuroscience and provide a synopsis of the known connections of the gut microbiome with social-affective brain function and behavior, specifically highlighting human developmental work when possible. We then focus on adolescence, a key period of neurobiological and social-affective development. Specifically, we review the links between the gut microbiome and six overarching domains of change during adolescence: (a) social processes, (b) motivation and behavior, (c) neural development, (d) cognition, (e) neuroendocrine function, and (f) physical health and wellness. Using a developmental science perspective, we summarize key changes across these six domains to underscore the promise for the gut microbiome to bidirectionally influence and transform adolescent development.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Encéfalo/crescimento & desenvolvimento , Cognição/fisiologia , Microbioma Gastrointestinal/fisiologia , Adolescente , Humanos
12.
PLoS Comput Biol ; 13(2): e1005404, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28222096

RESUMO

Community-level data, the type generated by an increasing number of metabarcoding studies, is often graphed as stacked bar charts or pie graphs that use color to represent taxa. These graph types do not convey the hierarchical structure of taxonomic classifications and are limited by the use of color for categories. As an alternative, we developed metacoder, an R package for easily parsing, manipulating, and graphing publication-ready plots of hierarchical data. Metacoder includes a dynamic and flexible function that can parse most text-based formats that contain taxonomic classifications, taxon names, taxon identifiers, or sequence identifiers. Metacoder can then subset, sample, and order this parsed data using a set of intuitive functions that take into account the hierarchical nature of the data. Finally, an extremely flexible plotting function enables quantitative representation of up to 4 arbitrary statistics simultaneously in a tree format by mapping statistics to the color and size of tree nodes and edges. Metacoder also allows exploration of barcode primer bias by integrating functions to run digital PCR. Although it has been designed for data from metabarcoding research, metacoder can easily be applied to any data that has a hierarchical component such as gene ontology or geographic location data. Our package complements currently available tools for community analysis and is provided open source with an extensive online user manual.


Assuntos
Algoritmos , Gráficos por Computador , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Linguagens de Programação , Interface Usuário-Computador , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala
13.
J Hered ; 109(5): 604-609, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29566237

RESUMO

Freshwater snails are the intermediate hosts for numerous parasitic worms which can have negative consequences for human health and agriculture. Understanding the transmission of these diseases requires a more complete characterization of the immunobiology of snail hosts. This includes the characterization of its microbiome and genetic factors which may interact with this important commensal community. Allelic variation in the Guadeloupe resistance complex (GRC) genomic region of Guadeloupean Biomphalaria glabrata influences their susceptibility to schistosome infection and may have other roles in the snail immune response. In the present study, we examined whether a snail's GRC genotype has a role in shaping the bacterial diversity and composition present on or in whole snails. We show that the GRC haplotype, including the resistant genotype, has a significant effect on the diversity of bacterial species present in or on whole snails, including the relative abundances of Gemmatimonas aurantiaca and Micavibrio aeruginosavorus. These findings support the hypothesis that the GRC region is likely involved in pathways that can modify the microbial community of these snails and may have more immune roles in B. glabrata than originally believed. This is also one of few examples in which allelic variation at a particular locus has been shown to affect the microbiome in any species.


Assuntos
Alelos , Biomphalaria/genética , Biomphalaria/microbiologia , Variação Genética , Genoma , Microbiota , Animais , Haplótipos
14.
Dis Aquat Organ ; 131(2): 121-131, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30460918

RESUMO

Parasites in wild populations almost always exhibit aggregation (overdispersion), in which relatively few hosts are infected with high numbers of the parasites. This pattern of infection has also been observed in laboratory studies, where many of the sources of natural variation are removed. Pseudocapillaria tomentosa (Nematoda) is common in zebrafish (Danio rerio) facilities. We describe here patterns of infections in zebrafish experimentally infected with larvated P. tomentosa eggs in various trials with defined numbers of eggs. One trial with eggs delivered in a gelatin diet is also included. Fish were exposed at 25, 75, and 200 eggs fish-1, and the minimal infectious dose was estimated to be 1.5 eggs fish-1. The ID50 (50% infective dose) was calculated to be 17.5 eggs fish-1. We also included data from a trial and 2 previously published experiments with undefined doses in which zebrafish were exposed to infectious water and detritus from a tank that previously contained infected fish. All doses resulted in a high prevalence of infection (>70%), except at the 25 eggs fish-1 dose, where the prevalence was 43-46%. Mean abundance of worms corresponded to dose, from 0.57 worms fish-1 at 25 eggs fish-1 to 7 worms fish-1 at 200 eggs fish-1. Variance to mean ratios (V/M) and the k parameters showed aggregation across the 8 separate trials, including the gelatin diet. Aggregation increased with increased parasite abundance. Given the consistent observation of aggregation across our experiments, the zebrafish/P. tomentosa system provides a potentially robust, high-throughput model to investigate factors that influence differences in host susceptibility within defined populations.


Assuntos
Doenças dos Peixes/parasitologia , Ciência dos Animais de Laboratório , Nematoides/classificação , Infecções por Nematoides/veterinária , Peixe-Zebra , Animais , Feminino , Masculino , Infecções por Nematoides/parasitologia
15.
Proc Natl Acad Sci U S A ; 112(27): 8356-61, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26106159

RESUMO

Identifying the ecological and evolutionary mechanisms that determine biological diversity is a central question in ecology. In microbial ecology, phylogenetic diversity is an increasingly common and relevant means of quantifying community diversity, particularly given the challenges in defining unambiguous species units from environmental sequence data. We explore patterns of phylogenetic diversity across multiple bacterial communities drawn from different habitats and compare these data to evolutionary trees generated using theoretical models of biodiversity. We have two central findings. First, although on finer scales the empirical trees are highly idiosyncratic, on coarse scales the backbone of these trees is simple and robust, consistent across habitats, and displays bursts of diversification dotted throughout. Second, we find that these data demonstrate a clear departure from the predictions of standard neutral theories of biodiversity and that an alternative family of generalized models provides a qualitatively better description. Together, these results lay the groundwork for a theoretical framework to connect ecological mechanisms to observed phylogenetic patterns in microbial communities.


Assuntos
Bactérias/crescimento & desenvolvimento , Biodiversidade , Evolução Biológica , Modelos Biológicos , Algoritmos , Bactérias/classificação , Bactérias/genética , Ecologia/métodos , Ecossistema , Filogenia , Especificidade da Espécie
16.
PLoS Comput Biol ; 11(11): e1004573, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26565399

RESUMO

Shotgun metagenomic DNA sequencing is a widely applicable tool for characterizing the functions that are encoded by microbial communities. Several bioinformatic tools can be used to functionally annotate metagenomes, allowing researchers to draw inferences about the functional potential of the community and to identify putative functional biomarkers. However, little is known about how decisions made during annotation affect the reliability of the results. Here, we use statistical simulations to rigorously assess how to optimize annotation accuracy and speed, given parameters of the input data like read length and library size. We identify best practices in metagenome annotation and use them to guide the development of the Shotgun Metagenome Annotation Pipeline (ShotMAP). ShotMAP is an analytically flexible, end-to-end annotation pipeline that can be implemented either on a local computer or a cloud compute cluster. We use ShotMAP to assess how different annotation databases impact the interpretation of how marine metagenome and metatranscriptome functional capacity changes across seasons. We also apply ShotMAP to data obtained from a clinical microbiome investigation of inflammatory bowel disease. This analysis finds that gut microbiota collected from Crohn's disease patients are functionally distinct from gut microbiota collected from either ulcerative colitis patients or healthy controls, with differential abundance of metabolic pathways related to host-microbiome interactions that may serve as putative biomarkers of disease.


Assuntos
Mapeamento Cromossômico/métodos , Metagenoma/genética , Metagenômica/métodos , Microbiota/genética , Simulação por Computador , Doença de Crohn/microbiologia , Marcadores Genéticos/genética , Humanos , Modelos Genéticos
17.
Environ Microbiol ; 17(8): 2952-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25753751

RESUMO

Many obligate symbiotic fungi are difficult to maintain in culture, and there is a growing need for alternative approaches to obtaining tissue and subsequent genomic assemblies from such species. In this study, the genome of Elaphomyces granulatus was sequenced from sporocarp tissue. The genome assembly remains on many contigs, but gene space is estimated to be mostly complete. Phylogenetic analyses revealed that the Elaphomyces lineage is most closely related to Talaromyces and Trichocomaceae s.s. The genome of E. granulatus is reduced in carbohydrate-active enzymes, despite a large expansion in genome size, both of which are consistent with what is seen in Tuber melanosporum, the other sequenced ectomycorrhizal ascomycete. A large number of transposable elements are predicted in the E. granulatus genome, especially Gypsy-like long terminal repeats, and there has also been an expansion in helicases. The metagenome is a complex community dominated by bacteria in Bradyrhizobiaceae, and there is evidence to suggest that the community may be reduced in functional capacity as estimated by KEGG pathways. Through the sequencing of sporocarp tissue, this study has provided insights into Elaphomyces phylogenetics, genomics, metagenomics and the evolution of the ectomycorrhizal association.


Assuntos
Bradyrhizobiaceae/genética , DNA Fúngico/genética , Eurotiales/genética , Carpóforos/genética , Genoma Fúngico/genética , Metagenoma , Sequência de Bases , Bradyrhizobiaceae/classificação , Elementos de DNA Transponíveis/genética , Eurotiales/classificação , Metagenômica , Microbiota/genética , Micorrizas/genética , Filogenia , Análise de Sequência de DNA , Talaromyces/genética
19.
BMC Genomics ; 15: 262, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24708091

RESUMO

BACKGROUND: Targeted capture of genomic regions reduces sequencing cost while generating higher coverage by allowing biomedical researchers to focus on specific loci of interest, such as exons. Targeted capture also has the potential to facilitate the generation of genomic data from DNA collected via saliva or buccal cells. DNA samples derived from these cell types tend to have a lower human DNA yield, may be degraded from age and/or have contamination from bacteria or other ambient oral microbiota. However, thousands of samples have been previously collected from these cell types, and saliva collection has the advantage that it is a non-invasive and appropriate for a wide variety of research. RESULTS: We demonstrate successful enrichment and sequencing of 15 South African KhoeSan exomes and 2 full genomes with samples initially derived from saliva. The expanded exome dataset enables us to characterize genetic diversity free from ascertainment bias for multiple KhoeSan populations, including new exome data from six HGDP Namibian San, revealing substantial population structure across the Kalahari Desert region. Additionally, we discover and independently verify thirty-one previously unknown KIR alleles using methods we developed to accurately map and call the highly polymorphic HLA and KIR loci from exome capture data. Finally, we show that exome capture of saliva-derived DNA yields sufficient non-human sequences to characterize oral microbial communities, including detection of bacteria linked to oral disease (e.g. Prevotella melaninogenica). For comparison, two samples were sequenced using standard full genome library preparation without exome capture and we found no systematic bias of metagenomic information between exome-captured and non-captured data. CONCLUSIONS: DNA from human saliva samples, collected and extracted using standard procedures, can be used to successfully sequence high quality human exomes, and metagenomic data can be derived from non-human reads. We find that individuals from the Kalahari carry a higher oral pathogenic microbial load than samples surveyed in the Human Microbiome Project. Additionally, rare variants present in the exomes suggest strong population structure across different KhoeSan populations.


Assuntos
Exoma , Genômica , Metagenômica , Saliva/química , Saliva/microbiologia , Genoma Humano , Genótipo , Antígenos HLA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Microbiota , Dados de Sequência Molecular , Boca/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Receptores KIR/genética
20.
Sci Rep ; 14(1): 14618, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918492

RESUMO

Early-life exposure to environmental toxicants like Benzo[a]pyrene (BaP) is associated with several health consequences in vertebrates (i.e., impaired or altered neurophysiological and behavioral development). Although toxicant impacts were initially studied relative to host physiology, recent studies suggest that the gut microbiome is a possible target and/or mediator of behavioral responses to chemical exposure in organisms, via the gut-brain axis. However, the connection between BaP exposure, gut microbiota, and developmental neurotoxicity remains understudied. Using a zebrafish model, we determined whether the gut microbiome influences BaP impacts on behavior development. Embryonic zebrafish were treated with increasing concentrations of BaP and allowed to grow to the larval life stage, during which they underwent behavioral testing and intestinal dissection for gut microbiome profiling via high-throughput sequencing. We found that exposure affected larval zebrafish microbiome diversity and composition in a manner tied to behavioral development: increasing concentrations of BaP were associated with increased taxonomic diversity, exposure was associated with unweighted UniFrac distance, and microbiome diversity and exposure predicted larval behavior. Further, a gnotobiotic zebrafish experiment clarified whether microbiome presence was associated with BaP exposure response and behavioral changes. We found that gut microbiome state altered the relationship between BaP exposure concentration and behavioral response. These results support the idea that the zebrafish gut microbiome is a determinant of the developmental neurotoxicity that results from chemical exposure.


Assuntos
Comportamento Animal , Benzo(a)pireno , Microbioma Gastrointestinal , Larva , Peixe-Zebra , Animais , Peixe-Zebra/microbiologia , Benzo(a)pireno/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA