Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Malar J ; 17(1): 114, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540197

RESUMO

BACKGROUND: Human-immune-system humanized mouse models can bridge the gap between humans and conventional mice for testing human vaccines. The HLA-expressing humanized DRAGA (HLA-A2.HLA-DR4.Rag1KO.IL2RγcKO.NOD) mice reconstitute a functional human-immune-system and sustain the complete life cycle of Plasmodium falciparum. Herein, the DRAGA mice were investigated for immune responses following immunization with live P. falciparum sporozoites under chloroquine chemoprophylaxis (CPS-CQ), an immunization approach that showed in human trials to confer pre-erythrocytic immunity. RESULTS: The CPS-CQ immunized DRAGA mice (i) elicited human CD4 and CD8 T cell responses to antigens expressed by P. falciparum sporozoites (Pfspz) and by the infected-red blood cells (iRBC). The Pfspz-specific human T cell responses were found to be systemic (spleen and liver), whereas the iRBCs-specific human T cell responses were more localized to the liver, (ii) elicited stronger antibody responses to the Pfspz than to the iRBCs, and (iii) they were protected against challenge with infectious Pfspz but not against challenge with iRBCs. CONCLUSIONS: The DRAGA mice represent a new pre-clinical model to investigate the immunogenicity and protective efficacy of P. falciparum malaria vaccine candidates.


Assuntos
Anticorpos Antiprotozoários/sangue , Cloroquina/uso terapêutico , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Esporozoítos/imunologia , Animais , Formação de Anticorpos , Antimaláricos/uso terapêutico , Humanos , Camundongos , Camundongos Transgênicos
2.
J Vector Borne Dis ; 54(4): 301-310, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29460859

RESUMO

BACKGROUND & OBJECTIVES: Vector-borne pathogen surveillance programmes typically rely on the collection of large numbers of potential vectors followed by screening protocols focused on detecting pathogens in the arthropods. These processes are laborious, time consuming, expensive, and require screening of large numbers of samples. To streamline the surveillance process, increase sample throughput, and improve cost-effectiveness, a method to detect dengue virus and malaria parasites (Plasmodium falciparum) by leveraging the sugar-feeding behaviour of mosquitoes and their habit of expectorating infectious agents in their saliva during feeding was investigated in this study. METHODS: Dengue virus 2 (DENV-2) infected female Aedes aegypti mosquitoes and P. falciparum infected female Anopheles stephensi mosquitoes were allowed to feed on honey coated Flinders Technical Associates -FTA® cards dyed with blue food colouring. The feeding resulted in deposition of saliva containing either DENV-2 particles or P. falciparum sporozoites onto the FTA card. Nucleic acid was extracted from each card and the appropriate real-time PCR (qPCR) assay was run to detect the pathogen of interest. RESULTS: As little as one plaque forming unit (PFU) of DENV-2 and as few as 60 P. falciparum parasites deposited on FTA cards from infected mosquitoes were detected via qPCR. Hence, their use to collect mosquito saliva for pathogen detection is a relevant technique for vector surveillance. INTERPRETATION & CONCLUSION: This study provides laboratory confirmation that FTA cards can be used to capture and stabilize expectorated DENV-2 particles and P. falciparum sporozoites from infectious, sugar-feeding mosquitoes in very low numbers. Thus, the FTA card-based mosquito saliva capture method offers promise to overcome current limitations and revolutionize traditional mosquito-based pathogen surveillance programmes. Field testing and further method development are required to optimize this strategy.


Assuntos
Vírus da Dengue/genética , Monitoramento Epidemiológico , Técnicas de Diagnóstico Molecular/métodos , Plasmodium falciparum/genética , Saliva/parasitologia , Saliva/virologia , Aedes/virologia , Animais , Anopheles/parasitologia , DNA de Protozoário/genética , DNA Viral/genética , Dengue/diagnóstico , Dengue/epidemiologia , Dengue/virologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/patogenicidade , Comportamento Alimentar , Feminino , Corantes de Alimentos , Malária Falciparum/diagnóstico por imagem , Malária Falciparum/parasitologia , Técnicas de Diagnóstico Molecular/instrumentação , Plasmodium falciparum/isolamento & purificação , Plasmodium falciparum/patogenicidade
3.
Front Immunol ; 13: 1047277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505432

RESUMO

A major barrier in the use of humanized mice as models of HIV-1 (HIV) infection is the inadequate generation of virus-specific antibody responses. Humanized DRAGA (hDRAGA) mice generate antigen-specific class switched antibodies to several pathogens, but whether they do so in HIV infection and the extent to which their secondary lymphoid tissues (sLT) support germinal center responses is unknown. hDRAGA mice were evaluated for their ability to support HIV replication, generate virus-specific antibody responses, develop splenocyte subsets, and organize sLT architecture. hDRAGA mice supported persistent HIV replication and developed modest levels of gp41-specific human IgM and IgG. Spleens from uninfected and HIV infected hDRAGA mice contained differentiated B and CD4+ T cell subsets including germinal center (GC) B cells and T follicular helper cells (TFH); relative expansions of TFH and CD8+ T cells, but not GC B cells, occurred in HIV-infected hDRAGA mice compared to uninfected animals. Immunofluorescent staining of spleen and mesenteric lymph node sections demonstrated atypical morphology. Most CD4+ and CD8+ T cells resided within CD20hi areas. CD20hi areas lacked canonical germinal centers, as defined by staining for IgD-Ki67+cells. No human follicular dendritic cells (FDC) were detected. Mouse FDC were distributed broadly throughout both CD20hi and CD20lo regions of sLT. HIV RNA particles were detected by in situ hybridization within CD20+ areas and some co-localized with mouse FDC. Viral RNA+ cells were more concentrated within CD20hi compared to CD20lo areas of sLT, but differences were diminished in spleen and eliminated in mesenteric lymph nodes when adjusted for CD4+ cell frequency. Thus, hDRAGA mice recapitulated multiple aspects of HIV pathogenesis including HIV replication, relative expansions in TFH and CD8+ T cells, and modest HIV-specific antibody production. Nevertheless, classical germinal center morphology in sLT was not observed, which may account for the inefficient expansion of GC B cells and generation of low titer human antibody responses to HIV-1 in this model.


Assuntos
Infecções por HIV , HIV-1 , Camundongos , Animais , Linfócitos T CD8-Positivos , Centro Germinativo , Anticorpos Anti-HIV
4.
Hum Vaccin Immunother ; 14(2): 345-360, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29135340

RESUMO

Pandemic outbreaks of influenza type A viruses have resulted in numerous fatalities around the globe. Since the conventional influenza vaccines (CIV) provide less than 20% protection for individuals with weak immune system, it has been considered that broadly cross-neutralizing antibodies may provide a better protection. Herein, we showed that a recently generated humanized mouse (DRAGA mouse; HLA-A2. HLA-DR4. Rag1KO. IL-2Rgc KO. NOD) that lacks the murine immune system and expresses a functional human immune system can be used to generate cross-reactive, human anti-influenza monoclonal antibodies (hu-mAb). DRAGA mouse was also found to be suitable for influenza virus infection, as it can clear a sub-lethal infection and sustain a lethal infection with PR8/A/34 influenza virus. The hu-mAbs were designed for targeting a human B-cell epitope (180WGIHHPPNSKEQ QNLY195) of hemagglutinin (HA) envelope protein of PR8/A/34 (H1N1) virus with high homology among seven influenza type A viruses. A single administration of HA180-195 specific hu-mAb in PR8-infected DRAGA mice significantly delayed the lethality by reducing the lung damage. The results demonstrated that DRAGA mouse is a suitable tool to (i) generate heterotype cross-reactive, anti-influenza human monoclonal antibodies, (ii) serve as a humanized mouse model for influenza infection, and (iii) assess the efficacy of anti-influenza antibody-based therapeutics for human use.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Infecções por Orthomyxoviridae/terapia , Sequência de Aminoácidos , Animais , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza A/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Moleculares , Testes de Neutralização , Conformação Proteica
5.
Front Immunol ; 9: 816, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760694

RESUMO

Scrub typhus is caused by Orientia tsutsugamushi, an obligated intracellular bacterium that affects over one million people per year. Several mouse models have been used to study its pathogenesis, disease immunology, and for testing vaccine candidates. However, due to the intrinsic differences between the immune systems in mouse and human, these mouse models could not faithfully mimic the pathology and immunological responses developed by human patients, limiting their value in both basic and translational studies. In this study, we have tested for the first time, a new humanized mouse model through footpad inoculation of O. tsutsugamushi in DRAGA (HLA-A2.HLA-DR4.Rag1KO.IL2RγcKO.NOD) mice with their human immune system reconstituted by infusion of HLA-matched human hematopoietic stem cells from umbilical cord blood. Upon infection, Orientia disseminated into various organs of DRAGA mice resulted in lethality in a dose-dependent manner, while all C3H/HeJ mice infected by the same route survived. Tissue-specific lesions associated with inflammation and/or necroses were observed in multiple organs of infected DRAGA mice. Consistent with the intracellular nature of Orientia, strong Th1, but subdued Th2 responses were elicited as reflected by the human cytokine profiles in sera from infected mice. Interestingly, the percentage of both activated and regulatory (CD4+FOXP3+) human T cells were elevated in spleen tissues of infected mice. After immunization with irradiated whole cell Orientia, humanized DRAGA mice showed a significant activation of human T cells as evidenced by increased number of human CD4+ and CD8+ T cells. Specific human IgM and IgG antibodies were developed after repetitive immunization. The humanized DRAGA mouse model represents a new pre-clinical model for studying Orientia-human interactions and also for testing vaccines and novel therapeutics for scrub typhus.


Assuntos
Modelos Animais de Doenças , Orientia tsutsugamushi , Tifo por Ácaros/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Citocinas/sangue , Antígeno HLA-A2/genética , Antígenos HLA-DR/genética , Humanos , Imunização , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Inflamação , Subunidade gama Comum de Receptores de Interleucina/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Baço/imunologia , Células Th1/imunologia , Células Th2/imunologia
6.
Sci Rep ; 6: 28093, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27323875

RESUMO

Humanized mice expressing Human Leukocyte Antigen (HLA) class I or II transgenes have been generated, but the role of class I vs class II on human T and B cell reconstitution and function has not been investigated in detail. Herein we show that NRG (NOD.RagKO.IL2RγcKO) mice expressing HLA-DR4 molecules (DRAG mice) and those co-expressing HLA-DR4 and HLA-A2 molecules (DRAGA mice) did not differ in their ability to develop human T and B cells, to reconstitute cytokine-secreting CD4 T and CD8 T cells, or to undergo immunoglobulin class switching. In contrast, NRG mice expressing only HLA-A2 molecules (A2 mice) reconstituted lower numbers of CD4 T cells but similar numbers of CD8 T cells. The T cells from A2 mice were deficient at secreting cytokines, and their B cells could not undergo immunoglobulin class switching. The inability of A2 mice to undergo immunoglobulin class switching is due to deficient CD4 helper T cell function. Upon immunization, the frequency and cytotoxicity of antigen-specific CD8 T cells in DRAGA mice was significantly higher than in A2 mice. The results indicated a multifactorial effect of the HLA-DR4 transgene on development and function of human CD4 T cells, antigen-specific human CD8 T cells, and immunoglobulin class switching.


Assuntos
Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Antígeno HLA-A2/genética , Antígeno HLA-DR4/genética , Animais , Linfócitos B/citologia , Linfócitos T CD4-Positivos/citologia , Citocinas/metabolismo , Humanos , Switching de Imunoglobulina/genética , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Vírus da Influenza A/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Peptídeos/síntese química , Peptídeos/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Proteínas Virais/síntese química , Proteínas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA