Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 157(24): 244701, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36586986

RESUMO

Ambient pressure x-ray photoelectron spectroscopy (APXPS) can provide a compelling platform for studying an analyte's oxidation and reduction reactions in solutions. This paper presents proof-of-principle operando measurements of a model organometallic complex, iron hexacyanide, in an aqueous solution using the dip-and-pull technique. The data demonstrates that the electrochemically active liquid meniscuses on the working electrodes can undergo controlled redox reactions which were observed using APXPS. A detailed discussion of several critical experimental considerations is included as guidance for anyone undertaking comparable experiments.

2.
J Synchrotron Radiat ; 28(Pt 2): 624-636, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650575

RESUMO

HIPPIE is a soft X-ray beamline on the 3 GeV electron storage ring of the MAX IV Laboratory, equipped with a novel ambient-pressure X-ray photoelectron spectroscopy (APXPS) instrument. The endstation is dedicated to performing in situ and operando X-ray photoelectron spectroscopy experiments in the presence of a controlled gaseous atmosphere at pressures up to 30 mbar [1 mbar = 100 Pa] as well as under ultra-high-vacuum conditions. The photon energy range is 250 to 2200 eV in planar polarization and with photon fluxes >1012 photons s-1 (500 mA ring current) at a resolving power of greater than 10000 and up to a maximum of 32000. The endstation currently provides two sample environments: a catalysis cell and an electrochemical/liquid cell. The former allows APXPS measurements of solid samples in the presence of a gaseous atmosphere (with a mixture of up to eight gases and a vapour of a liquid) and simultaneous analysis of the inlet/outlet gas composition by online mass spectrometry. The latter is a more versatile setup primarily designed for APXPS at the solid-liquid (dip-and-pull setup) or liquid-gas (liquid microjet) interfaces under full electrochemical control, and it can also be used as an open port for ad hoc-designed non-standard APXPS experiments with different sample environments. The catalysis cell can be further equipped with an IR reflection-absorption spectrometer, allowing for simultaneous APXPS and IR spectroscopy of the samples. The endstation is set up to easily accommodate further sample environments.

3.
Small ; 11(25): 3045-53, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25727527

RESUMO

Bimetallic nanoparticle (NP) catalysts are interesting for the development of selective catalysts in reactions such as the reduction of CO2 by H2 to form hydrocarbons. Here the synthesis of Ni-Co NPs is studied, and the morphological and structural changes resulting from their activation (via oxidation/reduction cycles), and from their operation under reaction conditions, are presented. Using ambient-pressure X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and transmission electron microscopy, it is found that the initial core-shell structure evolves to form a surface alloy due to nickel migration from the core. Interestingly, the core consists of a Ni-rich single crystal and a void with sharp interfaces. Residual phosphorous species, coming from the ligands used for synthesis, are found initially concentrated in the NP core, which later diffuse to the surface.

4.
Chemphyschem ; 16(5): 923-7, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25712198

RESUMO

We demonstrate the reversible intercalation of CO between a hexagonal boron nitride (h-BN) monolayer and a Rh(111) substrate above a threshold CO pressure of 0.01 mbar at room temperature. The intercalation of CO results in the flattening of the originally corrugated h-BN nanomesh and an electronic decoupling of the BN layer from the Rh substrate. The intercalated CO molecules assume a coverage and adsorption site distribution comparable to that on the free Rh(111) surface at similar conditions. The pristine h-BN nanomesh is reinstated upon heating to above 625 K. These observations may open up opportunities for a reversible tuning of the electronic and structural properties of monolayer BN films.

6.
ACS Catal ; 14(8): 5978-5986, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38660614

RESUMO

Reaction products in heterogeneous catalysis can be detected either on the catalyst surface or in the gas phase after desorption. However, if atoms are dissolved in the catalyst bulk, then reaction channels can become hidden. This is the case if the dissolution rate of the deposits is faster than their formation rate. This might lead to the underestimation or even overlooking of reaction channels such as, e.g., carbon deposition during hydrocarbon oxidation reactions, which is problematic as carbon can have a significant influence on the catalytic activity. Here, we demonstrate how such hidden deposition channels can be uncovered by carefully measuring the product formation rates in the local gas phase just above the catalyst surface with time-resolved ambient pressure X-ray photoelectron spectroscopy. As a case study, we investigate methane oxidation on a polycrystalline Pd catalyst in an oxygen-lean environment at a few millibar pressure. By ramping the temperature between 350 and 525 °C, we follow the time evolution of the different reaction pathways. Only in the oxygen mass-transfer limit do we observe CO production, while our data suggests that carbon deposition also happens outside this limit.

7.
J Am Chem Soc ; 135(31): 11572-9, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23822749

RESUMO

Through the use of ambient pressure X-ray photoelectron spectroscopy (APXPS) and a single-sided solid oxide electrochemical cell (SOC), we have studied the mechanism of electrocatalytic splitting of water (H2O + 2e(-) → H2 + O(2-)) and electro-oxidation of hydrogen (H2 + O(2-) → H2O + 2e(-)) at ∼700 °C in 0.5 Torr of H2/H2O on ceria (CeO2-x) electrodes. The experiments reveal a transient build-up of surface intermediates (OH(-) and Ce(3+)) and show the separation of charge at the gas-solid interface exclusively in the electrochemically active region of the SOC. During water electrolysis on ceria, the increase in surface potentials of the adsorbed OH(-) and incorporated O(2-) differ by 0.25 eV in the active regions. For hydrogen electro-oxidation on ceria, the surface concentrations of OH(-) and O(2-) shift significantly from their equilibrium values. These data suggest that the same charge transfer step (H2O + Ce(3+) <-> Ce(4+) + OH(-) + H(•)) is rate limiting in both the forward (water electrolysis) and reverse (H2 electro-oxidation) reactions. This separation of potentials reflects an induced surface dipole layer on the ceria surface and represents the effective electrochemical double layer at a gas-solid interface. The in situ XPS data and DFT calculations show that the chemical origin of the OH(-)/O(2-) potential separation resides in the reduced polarization of the Ce-OH bond due to the increase of Ce(3+) on the electrode surface. These results provide a graphical illustration of the electrochemically driven surface charge transfer processes under relevant and nonultrahigh vacuum conditions.

8.
ACS Catal ; 13(9): 6203-6213, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37180966

RESUMO

The metastability of supported metal nanoparticles limits their application in heterogeneous catalysis at elevated temperatures due to their tendency to sinter. One strategy to overcome these thermodynamic limits on reducible oxide supports is encapsulation via strong metal-support interaction (SMSI). While annealing-induced encapsulation is a well-explored phenomenon for extended nanoparticles, it is as yet unknown whether the same mechanisms hold for subnanometer clusters, where concomitant sintering and alloying might play a significant role. In this article, we explore the encapsulation and stability of size-selected Pt5, Pt10, and Pt19 clusters deposited on Fe3O4(001). In a multimodal approach using temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM), we demonstrate that SMSI indeed leads to the formation of a defective, FeO-like conglomerate encapsulating the clusters. By stepwise annealing up to 1023 K, we observe the succession of encapsulation, cluster coalescence, and Ostwald ripening, resulting in square-shaped crystalline Pt particles, independent of the initial cluster size. The respective sintering onset temperatures scale with the cluster footprint and thus size. Remarkably, while small encapsulated clusters can still diffuse as a whole, atom detachment and thus Ostwald ripening are successfully suppressed up to 823 K, i.e., 200 K above the Hüttig temperature that indicates the thermodynamic stability limit.

9.
Adv Mater ; 35(39): e2304621, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437599

RESUMO

Corrosion is the main factor limiting the lifetime of metallic materials, and a fundamental understanding of the governing mechanism and surface processes is difficult to achieve since the thin oxide films at the metal-liquid interface governing passivity are notoriously challenging to study. In this work, a combination of synchrotron-based techniques and electrochemical methods is used to investigate the passive film breakdown of a Ni-Cr-Mo alloy, which is used in many industrial applications. This alloy is found to be active toward oxygen evolution reaction (OER), and the OER onset coincides with the loss of passivity and severe metal dissolution. The OER mechanism involves the oxidation of Mo4+ sites in the oxide film to Mo6+ that can be dissolved, which results in passivity breakdown. This is fundamentally different from typical transpassive breakdown of Cr-containing alloys where Cr6+ is postulated to be dissolved at high anodic potentials, which is not observed here. At high current densities, OER also leads to acidification of the solution near the surface, further triggering metal dissolution. The OER plays an important role in the mechanism of passivity breakdown of Ni-Cr-Mo alloys due to their catalytic activity, and this effect needs to be considered when studying the corrosion of catalytically active alloys.

10.
J Am Chem Soc ; 134(23): 9615-21, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22582880

RESUMO

Both enantiomers of serine adsorb on the intrinsically chiral Cu{531} surface in two different adsorption geometries, depending on the coverage. At saturation, substrate bonds are formed through the two oxygen atoms of the carboxylate group and the amino group (µ3 coordination), whereas at lower coverage, an additional bond is formed through the deprotonated ß-OH group (µ4 coordination). The latter adsorption geometry involves substrate bonds through three side groups of the chiral center, respectively, which leads to significantly larger enantiomeric differences in adsorption geometries and energies compared to the µ3 coordination, which involves only two side groups. This relatively simple model system demonstrates, in direct comparison, that attractive interactions of three side groups with the substrate are much more effective in inducing strong enantiomeric differences in heterogeneous chiral catalyst systems than hydrogen bonds or repulsive interactions.


Assuntos
Cobre/química , Serina/química , Adsorção , Ácidos Carboxílicos/química , Ligação de Hidrogênio , Modelos Moleculares , Oxigênio/química , Estereoisomerismo , Propriedades de Superfície
11.
ACS Appl Mater Interfaces ; 14(5): 6465-6475, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099928

RESUMO

The important electrochemical processes in a battery happen at the solid/liquid interfaces. Operando ambient pressure photoelectron spectroscopy (APPES) is one tool to study these processes with chemical specificity. However, accessing this crucial interface and identifying the interface signal are not trivial. Therefore, we present a measurement setup, together with a suggested model, exemplifying how APPES can be used to probe potential differences over the electrode/electrolyte interface, even without direct access to the interface. Both the change in electron electrochemical potential over the solid/liquid interface, and the change in Li chemical potential of the working electrode (WE) surface at Li-ion equilibrium can be probed. Using a Li4Ti5O12 composite as a WE, our results show that the shifts in kinetic energy of the electrolyte measured by APPES can be correlated to the electrochemical reactions occurring at the WE/electrolyte interface. Different shifts in kinetic energy are seen depending on if a phase transition reaction occurs or if a single phase is lithiated. The developed methodology can be used to evaluate charge transfer over the WE/electrolyte interface as well as the lithiation/delithiation mechanism of the WE.

12.
Environ Sci Atmos ; 2(2): 137-145, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35419521

RESUMO

Salt aerosols play important roles in many processes related to atmospheric chemistry and the climate systems on both Earth and Mars. Complicated and still poorly understood processes occur on the salt surfaces when interacting with water vapor. In this study, ambient pressure X-ray photoelectron spectroscopy (APXPS) is used to characterize the surface chemical environment of Martian salt analogues originating from saline lakes and playas, as well as their responses to varying relative humidities. Generally, APXPS shows similar ionic compositions to those observed by ion chromatography (IC). However, XPS is a surface-sensitive method while IC is bulk-sensitive and differences are observed for species that preferentially partition to the surface or the bulk. Element-selective surface enhancement of Cl- is observed, likely caused by the presence of SO4 2-. In addition, Mg2+ is concentrated on the surface while Na+ is relatively depleted in the surface layer. Hence, the cations (Na+ and Mg2+) and the anions (Cl- and SO4 2-) show competitive correlations. At elevated relative humidity (RH), no major spectral changes were observed in the XPS results, except for the growth of an oxygen component originating from condensed H2O. Near-edge X-ray absorption fine structure (NEXAFS) measurements show that the magnesium and sodium spectra are sensitive to the presence of water, and the results imply that the surface is fully solvated already at RH = 5%. The surface solvation is also fully reversible as the RH is reduced. No major differences are observed between sample types and sample locations, indicating that the salts originated from saline lakes commonly have solvated surfaces under the environmental conditions on Earth.

13.
J Phys Chem C Nanomater Interfaces ; 126(33): 14116-14124, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36060283

RESUMO

Hydrogenated graphene (H-Gr) is an extensively studied system not only because of its capabilities as a simplified model system for hydrocarbon chemistry but also because hydrogenation is a compelling method for Gr functionalization. However, knowledge of how H-Gr interacts with molecules at higher pressures and ambient conditions is lacking. Here we present experimental and theoretical evidence that room temperature O2 exposure at millibar pressures leads to preferential removal of H dimers on H-functionalized graphene, leaving H clusters on the surface. Our density functional theory (DFT) analysis shows that the removal of H dimers is the result of water or hydrogen peroxide formation. For water formation, we show that the two H atoms in the dimer motif attack one end of the physisorbed O2 molecule. Moreover, by comparing the reaction pathways in a vacuum with the ones on free-standing graphene and on the graphene/Ir(111) system, we find that the main role of graphene is to arrange the H atoms in geometrical positions, which facilitates the activation of the O=O double bond.

14.
J Am Chem Soc ; 133(17): 6659-67, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21473591

RESUMO

The coadsorption of water with organic molecules under near-ambient pressure and temperature conditions opens up new reaction pathways on model catalyst surfaces that are not accessible in conventional ultrahigh-vacuum surface-science experiments. The surface chemistry of glycine and alanine at the water-exposed Cu{110} interface was studied in situ using ambient-pressure photoemission and X-ray absorption spectroscopy techniques. At water pressures above 10(-5) Torr a significant pressure-dependent decrease in the temperature for dissociative desorption was observed for both amino acids, accompanied by the appearance of a new CN intermediate, which is not observed for lower pressures. The most likely reaction mechanisms involve dehydrogenation induced by O and/or OH surface species resulting from the dissociative adsorption of water. The linear relationship between the inverse decomposition temperature and the logarithm of water pressure enables determination of the activation energy for the surface reaction, between 213 and 232 kJ/mol, and a prediction of the decomposition temperature at the solid-liquid interface by extrapolating toward the equilibrium vapor pressure. Such experiments near the equilibrium vapor pressure provide important information about elementary surface processes at the solid-liquid interface, which can be retrieved neither under ultrahigh vacuum conditions nor from interfaces immersed in a solution.


Assuntos
Alanina/química , Cobre/química , Glicina/química , Adsorção , Vapor , Propriedades de Superfície , Espectroscopia por Absorção de Raios X
15.
ACS Appl Mater Interfaces ; 13(28): 32989-32996, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34251812

RESUMO

The electrochemical potential difference (ΔµÌ…) is the driving force for the transfer of a charged species from one phase to another in a redox reaction. In Li-ion batteries (LIBs), ΔµÌ… values for both electrons and Li-ions play an important role in the charge-transfer kinetics at the electrode/electrolyte interfaces. Because of the lack of suitable measurement techniques, little is known about how ΔµÌ… affects the redox reactions occurring at the solid/liquid interfaces during LIB operation. Herein, we outline the relations between different potentials and show how ambient pressure photoelectron spectroscopy (APPES) can be used to follow changes in ΔµÌ…e over the solid/liquid interfaces operando by measuring the kinetic energy (KE) shifts of the electrolyte core levels. The KE shift versus applied voltage shows a linear dependence of ∼1 eV/V during charging of the electrical double layer and during solid electrolyte interphase formation. This agrees with the expected results for an ideally polarizable interface. During lithiation, the slope changes drastically. We propose a model to explain this based on charge transfer over the solid/liquid interface.

16.
ACS Appl Mater Interfaces ; 13(40): 47629-47641, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34590812

RESUMO

A setup capable of conducting gas pulse-X-ray probe ambient pressure photoelectron spectroscopy with high time resolution is presented. The setup makes use of a fast valve that creates gas pulses with an internal pressure in the mbar range and a rising edge of few hundreds of microseconds. A gated detector based on a fast camera is synchronized with the valve operation to measure X-ray photoemission spectra with up to 20 µs time resolution. The setup is characterized in several experiments in which the N2 gas is pulsed either into vacuum or a constant flow of another gas. The observed width of the pulse rising edge is 80 µs, and the maximum internal pulse pressure is ∼1 mbar. The CO oxidation reaction over Pt (111) was used to demonstrate the capability of the setup to correlate the gas phase composition with that of the surface during transient supply of CO gas into an O2 stream. Thus, formation of both chemisorbed and oxide oxygen species was observed prior to CO gas perturbation. Also, the data indicated that both the Langmuir-Hinshelwood and Mars-van-Krevelen mechanisms play an important role in the oxidation of carbon monoxide under ambient conditions.

17.
Nat Commun ; 12(1): 6117, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675205

RESUMO

Heterogeneous catalyst surfaces are dynamic entities that respond rapidly to changes in their local gas environment, and the dynamics of the response is a decisive factor for the catalysts' action and activity. Few probes are able to map catalyst structure and local gas environment simultaneously under reaction conditions at the timescales of the dynamic changes. Here we use the CO oxidation reaction and a Pd(100) model catalyst to demonstrate how such studies can be performed by time-resolved ambient pressure photoelectron spectroscopy. Central elements of the method are cyclic gas pulsing and software-based event-averaging by image recognition of spectral features. A key finding is that at 3.2 mbar total pressure a metallic, predominantly CO-covered metallic surface turns highly active for a few seconds once the O2:CO ratio becomes high enough to lift the CO poisoning effect before mass transport limitations triggers formation of a √5 oxide.

18.
Langmuir ; 26(13): 10918-23, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20527828

RESUMO

Enantio-specific interactions on intrinsically chiral or chirally modified surfaces can be identified experimentally via comparison of the adsorption geometries of similar nonchiral and chiral molecules. Information about the effects of substrate-related and intermolecular interactions on the adsorption geometry of glycine, the only natural nonchiral amino acid, is therefore important for identifying enantio-specific interactions of larger chiral amino acids. We have studied the long- and short-range adsorption geometry and bonding properties of glycine on the intrinsically chiral Cu{531} surface with low-energy electron diffraction, near-edge X-ray absorption fine structure spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. For coverages between 0.15 and 0.33 ML (saturated chemisorbed layer) and temperatures between 300 and 430 K, glycine molecules adsorb in two different azimuthal orientations, which are associated with adsorption sites on the {110} and {311} microfacets of Cu{531}. Both types of adsorption sites allow a triangular footprint with surface bonds through the two oxygen atoms and the nitrogen atom. The occupation of the two adsorption sites is equal for all coverages, which can be explained by pair formation due to similar site-specific adsorption energies and the possibility of forming hydrogen bonds between molecules on adjacent {110} and {311} sites. This is not the case for alanine and points toward higher site specificity in the case of alanine, which is eventually responsible for the enantiomeric differences observed for the alanine system.

19.
Langmuir ; 26(24): 18841-51, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21090821

RESUMO

Establishing a molecular-level understanding of enantioselectivity and chiral resolution at the organic-inorganic interfaces is a key challenge in the field of heterogeneous catalysis. As a model system, we investigate the adsorption geometry of serine on Cu{110} using a combination of low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The chirality of enantiopure chemisorbed layers, where serine is in its deprotonated (anionic) state, is expressed at three levels: (i) the molecules form dimers whose orientation with respect to the substrate depends on the molecular chirality, (ii) dimers of L- and D-enantiomers aggregate into superstructures with chiral (-1 ∓2; 4 0) lattices, respectively, which are mirror images of each other, and (iii) small islands have elongated shapes with the dominant direction depending on the chirality of the molecules. Dimer and superlattice formation can be explained in terms of intra- and interdimer bonds involving carboxylate, amino, and ß-OH groups. The stability of the layers increases with the size of ordered islands. In racemic mixtures, we observe chiral resolution into small ordered enantiopure islands, which appears to be driven by the formation of homochiral dimer subunits and the directionality of interdimer hydrogen bonds. These islands show the same enantiospecific elongated shapes those as in low-coverage enantiopure layers.


Assuntos
Cobre/química , Serina/química , Elétrons , Microscopia de Tunelamento , Modelos Moleculares , Conformação Molecular , Espectroscopia Fotoeletrônica , Estereoisomerismo , Propriedades de Superfície , Temperatura , Espectroscopia por Absorção de Raios X
20.
Nat Commun ; 8: 15360, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28516915

RESUMO

Elastic strain is being increasingly employed to enhance the catalytic properties of mixed ion-electron conducting oxides. However, its effect on oxygen storage capacity is not well established. Here, we fabricate ultrathin, coherently strained films of CeO2-δ between 5.6% biaxial compression and 2.1% tension. In situ ambient pressure X-ray photoelectron spectroscopy reveals up to a fourfold enhancement in equilibrium oxygen storage capacity under both compression and tension. This non-monotonic variation with strain departs from the conventional wisdom based on a chemical expansion dominated behaviour. Through depth profiling, film thickness variations and a coupled photoemission-thermodynamic analysis of space-charge effects, we show that the enhanced reducibility is not dominated by interfacial effects. On the basis of ab initio calculations of oxygen vacancy formation incorporating defect interactions and vibrational contributions, we suggest that the non-monotonicity arises from the tetragonal distortion under large biaxial strain. These results may guide the rational engineering of multilayer and core-shell oxide nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA