Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(30): e2123022119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858422

RESUMO

The formation of carbon-carbon bonds from prebiotic precursors such as carbon dioxide represents the foundation of all primordial life processes. In extant organisms, this reaction is carried out by the carbon monoxide dehydrogenase (CODH)/acetyl coenzyme A synthase (ACS) enzyme, which performs the cornerstone reaction in the ancient Wood-Ljungdahl metabolic pathway to synthesize the key biological metabolite, acetyl-CoA. Despite its significance, a fundamental understanding of this transformation is lacking, hampering efforts to harness analogous chemistry. To address these knowledge gaps, we have designed an artificial metalloenzyme within the azurin protein scaffold as a structural, functional, and mechanistic model of ACS. We demonstrate the intermediacy of the NiI species and requirement for ordered substrate binding in the bioorganometallic carbon-carbon bond-forming reaction from the one-carbon ACS substrates. The electronic and geometric structures of the nickel-acetyl intermediate have been characterized using time-resolved optical, electron paramagnetic resonance, and X-ray absorption spectroscopy in conjunction with quantum chemical calculations. Moreover, we demonstrate that the nickel-acetyl species is chemically competent for selective acyl transfer upon thiol addition to biosynthesize an activated thioester. Drawing an analogy to the native enzyme, a mechanism for thioester generation by this ACS model has been proposed. The fundamental insight into the enzymatic process provided by this rudimentary ACS model has implications for the evolution of primitive ACS-like proteins. Ultimately, these findings offer strategies for development of highly active catalysts for sustainable generation of liquid fuels from one-carbon substrates, with potential for broad applications across diverse fields ranging from energy storage to environmental remediation.


Assuntos
Aldeído Oxirredutases , Azurina , Ésteres , Complexos Multienzimáticos , Níquel , Origem da Vida , Compostos de Enxofre , Aldeído Oxirredutases/química , Azurina/química , Catálise , Ésteres/síntese química , Modelos Químicos , Complexos Multienzimáticos/química , Níquel/química , Compostos de Enxofre/síntese química
2.
J Am Chem Soc ; 146(20): 13817-13835, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716885

RESUMO

The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.

3.
Inorg Chem ; 63(6): 2899-2908, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38127051

RESUMO

The energetic and geometric features enabling redox chemistry across the copper cupredoxin fold contain key components of electron transfer chains (ETC), which have been extended here by templating the cross-ß bilayer assembly of a synthetic nonapeptide, HHQALVFFA-NH2 (K16A), with copper ions. Similar to ETC cupredoxin plastocyanin, these assemblies contain copper sites with blue-shifted (λmax 573 nm) electronic transitions and strongly oxidizing reduction potentials. Electron spin echo envelope modulation and X-ray absorption spectroscopies define square planar Cu(II) sites containing a single His ligand. Restrained molecular dynamics of the cross-ß peptide bilayer architecture support metal ion coordination stabilizing the leaflet interface and indicate that the relatively high reduction potential is not simply the result of distorted coordination geometry (entasis). Cyclic voltammetry (CV) supports a charge-hopping mechanism across multiple copper centers placed 10-12 Å apart within the assembled peptide leaflet interface. This metal-templated scaffold accordingly captures the electron shuttle and cupredoxin functionality in a peptide membrane-localized electron transport chain.

4.
J Am Chem Soc ; 145(48): 26106-26121, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37997643

RESUMO

We report the synthesis and characterization of a mononuclear nonheme cobalt(III)-imidyl complex, [Co(NTs)(TQA)(OTf)]+ (1), with an S = 3/2 spin state that is capable of facilitating exogenous substrate modifications. Complex 1 was generated from the reaction of CoII(TQA)(OTf)2 with PhINTs at -20 °C. A flow setup with ESI-MS detection was used to explore the kinetics of the formation, stability, and degradation pathway of 1 in solution by treating the Co(II) precursor with PhINTs. Co K-edge XAS data revealed a distinct shift in the Co K-edge compared to the Co(II) precursor, in agreement with the formation of a Co(III) intermediate. The unusual S = 3/2 spin state was proposed based on EPR, DFT, and CASSCF calculations and Co Kß XES results. Co K-edge XAS and IR photodissociation (IRPD) spectroscopies demonstrate that 1 is a six-coordinate species, and IRPD and resonance Raman spectroscopies are consistent with 1 being exclusively the isomer with the NT ligand occupying the vacant site trans to the TQA aliphatic amine nitrogen atom. Electronic structure calculations (broken symmetry DFT and CASSCF/NEVPT2) demonstrate an S = 3/2 oxidation state resulting from the strong antiferromagnetic coupling of an •NTs spin to the high-spin S = 2 Co(III) center. Reactivity studies of 1 with PPh3 derivatives revealed its electrophilic characteristic in the nitrene-transfer reaction. While the activation of C-H bonds by 1 was proved to be kinetically challenging, 1 could oxidize weak O-H and N-H bonds. Complex 1 is, therefore, a rare example of a Co(III)-imidyl complex capable of exogenous substrate transformations.

5.
J Am Chem Soc ; 144(49): 22698-22712, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36454200

RESUMO

High-valent first-row transition-metal-oxo complexes are important intermediates in biologically and chemically relevant oxidative transformations of organic molecules and in the water splitting reaction in (artificial) photosynthesis. While high-valent Fe- and Mn-oxo complexes have been characterized in detail, much less is known about their analogues with late transition metals. In this study, we present the synthesis and detailed characterization of a unique mononuclear terminal Ni-O complex. This compound, [Ni(TAML)(O)(OH)]3-, is characterized by an intense charge-transfer (CT) band around 730 nm and has an St = 1 ground state, as determined by magnetic circular dichroism spectroscopy. From extended X-ray absorption fine structure (EXAFS), the Ni-O bond distance is 1.84 Å. Ni K edge XAS data indicate that the complex contains a Ni(III) center, which results from an unusually large degree of Ni-O π-bond inversion, with one hole located on the oxo ligand. The complex is therefore best described as a low-spin Ni(III) complex (S = 1/2) with a bound oxyl (O•-) ligand (S = 1/2), where the spins of Ni and oxyl are ferromagnetically coupled, giving rise to the observed St = 1 ground state. This bonding description is roughly equivalent to the presence of a Ni-O single (σ) bond. Reactivity studies show that [Ni(TAML)(O)(OH)]3- is a strong oxidant capable of oxidizing thioanisole and styrene derivatives with large negative ρ values in the Hammett plot, indicating its electrophilic nature. The intermediate also shows high reactivity in C-H bond activation of hydrocarbons with a kinetic isotope effect of 7.0(3) in xanthene oxidation.


Assuntos
Complexos de Coordenação , Ligantes , Oxirredução , Complexos de Coordenação/química
6.
Angew Chem Int Ed Engl ; 61(22): e202202329, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35302701

RESUMO

Dinitrogen coordination to iron centers underpins industrial and biological fixation in the Haber-Bosch process and by the FeM cofactors in the nitrogenase enzymes. The latter employ local high-spin metal centers; however, iron-dinitrogen coordination chemistry remains dominated by low-valent states, contrasting the enzyme systems. Here, we report a high-spin mixed-valent cis-(µ-1,2-dinitrogen)diiron(I/II) complex [(FeBr)2 (µ-N2 )Lbis ]- (2), where [Lbis ]- is a bis(ß-diketiminate) cyclophane. Field-applied Mössbauer spectra, dc and ac magnetic susceptibility measurements, and computational methods support a delocalized S=7 /2 Fe2 N2 unit with D=-5.23 cm-1 and consequent slow magnetic relaxation.


Assuntos
Ferro , Nitrogenase
7.
J Am Chem Soc ; 143(15): 5649-5653, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33830763

RESUMO

Reduction of a tricobalt(II) tri(bromide) cluster supported by a tris(ß-diketiminate) cyclophane results in halide loss, ligand compression, and metal-metal bond formation to yield a 48-electron CoI3 cluster, Co3LEt/Me (2). Upon reaction of 2 with dinitrogen, all metal-metal bonds are broken, steric conflicts are relaxed, and dinitrogen is incorporated within the internal cavity to yield a formally (µ3-η1:η2:η1-dinitrogen)tricobalt(I) complex, 3. Broken symmetry DFT calculations (PBE0/def2-tzvp/D3) support an N-N bond order of 2.1 in the bound N2 with the calculated N-N stretching frequency (1743 cm-1) comparable to the experimental value (1752 cm-1). Reduction of 3 under Ar in the presence of Me3SiBr results in N2 scission with tris(trimethylsilyl)amine afforded in good yield.

8.
J Am Chem Soc ; 143(41): 16943-16959, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609879

RESUMO

In this paper, we report the preparation, spectroscopic and theoretical characterization, and reactivity studies of a Co(IV)-oxo complex bearing an N4-macrocyclic coligand, 12-TBC (12-TBC = 1,4,7,10-tetrabenzyl-1,4,7,10-tetraazacyclododecane). On the basis of the ligand and the structure of the Co(II) precursor, [CoII(12-TBC)(CF3SO3)2], one would assume that this species corresponds to a tetragonal Co(IV)-oxo complex, but the spectroscopic data do not support this notion. Co K-edge XAS data show that the treatment of the Co(II) precursor with iodosylbenzene (PhIO) as an oxidant at -40 °C in the presence of a proton source leads to a distinct shift in the Co K-edge, in agreement with the formation of a Co(IV) intermediate. The presence of the oxo group is further demonstrated by resonance Raman (rRaman) spectroscopy. Interestingly, the EPR data of this complex show a high degree of rhombicity, indicating structural distortion. This is further supported by the EXAFS data. Using DFT calculations, a structural model is developed for this complex with a ligand-protonated structure that features a Co═O···HN hydrogen bond and a four-coordinate Co center in a seesaw-shaped coordination geometry. Magnetic circular dichroism (MCD) spectroscopy further supports this finding. The hydrogen bond leads to an interesting polarization of the Co-oxo π-bonds, where one O(p) lone-pair is stabilized and leads to a regular Co(d) interaction, whereas the other π-bond shows an inverted ligand field. The reactivity of this complex in hydrogen atom and oxygen atom transfer reactions is discussed as well.

9.
Inorg Chem ; 60(21): 16074-16078, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672568

RESUMO

MitoNEET, a key regulatory protein in mitochondrial energy metabolism, exhibits a uniquely ligated [2Fe-2S] cluster with one histidine and three cysteines. This unique cluster has been postulated to sense the redox environment and release Fe-S cofactors under acidic pH. Reported herein is a synthetic system that shows how [2Fe-2S] clusters react with protons and rearrange their coordination geometry. The low-temperature stable, site-differentiated clusters [Fe2S2(SPh)3(CF3COO)]2- and [Fe2S2(SPh)3(py)]- have been prepared via controlled protonation below -35 °C and characterized by NMR, UV-vis, and X-ray absorption spectroscopy. Both complexes exhibit anodically shifted redox potentials compared to [Fe2S2(SPh)4]2- and convert to [Fe4S4(SPh)4]2- upon warming to room temperature. The current study provides insight into how mitoNEET releases its [2Fe-2S] in response to highly tuned acidic conditions, the chemistry of which may have further implications in Fe-S biogenesis.


Assuntos
Proteínas Ferro-Enxofre
10.
Inorg Chem ; 60(10): 7228-7239, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33900076

RESUMO

CO2 insertion into tri(µ-hydrido)triiron(II) clusters ligated by a tris(ß-diketiminate) cyclophane is demonstrated to be balanced by sterics for CO2 approach and hydride accessibility. Time-resolved NMR and UV-vis spectra for this reaction for a complex in which methoxy groups border the pocket of the hydride donor (Fe3H3L2, 4) result in a decreased activation barrier and increased kinetic isotope effect consistent with the reduced sterics. For the ethyl congener Fe3H3L1 (2), no correlation is found between rate and reaction solvent or added Lewis acids, implying CO2 coordination to an Fe center in the mechanism. The estimated hydricity (50 kcal/mol) based on observed H/D exchange with BD3 requires Fe-O bond formation in the product to offset an endergonic CO2 insertion. µ3-hydride coordination is noted to lower the activation barrier for the first CO2 insertion event in DFT calculations.

11.
Angew Chem Int Ed Engl ; 59(32): 13581-13585, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32358999

RESUMO

A mononuclear nonheme cobalt(III) iodosylbenzene complex, [CoIII (TQA)(OIPh)(OH)]2+ (1), is synthesized and characterized structurally and spectroscopically. While 1 is a sluggish oxidant in oxidation reactions, it becomes a competent oxidant in oxygen atom transfer reactions, such as olefin epoxidation, in the presence of a small amount of proton. More interestingly, 1 shows a nucleophilic reactivity in aldehyde deformylation reaction, demonstrating that 1 has an amphoteric reactivity. Another interesting observation is that 1 can be used as an oxygen atom donor in the generation of high-valent metal-oxo complexes. To our knowledge, we present the first crystal structure of a CoIII iodosylbenzene complex and the unprecedented reactivity of metal-iodosylarene adduct.

12.
Inorg Chem ; 58(14): 8969-8982, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30788970

RESUMO

Nickel-containing enzymes such as methyl coenzyme M reductase (MCR) and carbon monoxide dehydrogenase/acetyl coenzyme A synthase (CODH/ACS) play a critical role in global energy conversion reactions, with significant contributions to carbon-centered processes. These enzymes are implied to cycle through a series of nickel-based organometallic intermediates during catalysis, though identification of these intermediates remains challenging. In this work, we have developed and characterized a nickel-containing metalloprotein that models the methyl-bound organometallic intermediates proposed in the native enzymes. Using a nickel(I)-substituted azurin mutant, we demonstrate that alkyl binding occurs via nucleophilic addition of methyl iodide as a methyl donor. The paramagnetic NiIII-CH3 species initially generated can be rapidly reduced to a high-spin NiII-CH3 species in the presence of exogenous reducing agent, following a reaction sequence analogous to that proposed for ACS. These two distinct bioorganometallic species have been characterized by optical, EPR, XAS, and MCD spectroscopy, and the overall mechanism describing methyl reactivity with nickel azurin has been quantitatively modeled using global kinetic simulations. A comparison between the nickel azurin protein system and existing ACS model compounds is presented. NiIII-CH3 Az is only the second example of two-electron addition of methyl iodide to a NiI center to give an isolable species and the first to be formed in a biologically relevant system. These results highlight the divergent reactivity of nickel across the two intermediates, with implications for likely reaction mechanisms and catalytically relevant states in the native ACS enzyme.


Assuntos
Acetilcoenzima A/química , Acetilcoenzima A/metabolismo , Níquel/química , Compostos Organometálicos/química , Azurina/genética , Azurina/metabolismo , Catálise , Cromatografia Gasosa , Regulação Bacteriana da Expressão Gênica , Cinética , Fenômenos Magnéticos , Mutação , Compostos Organometálicos/metabolismo , Pseudomonas aeruginosa/enzimologia , Análise Espectral
14.
Inorg Chem ; 57(18): 11382-11392, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30160943

RESUMO

Reaction of the tricopper(I)-dinitrogen tris(ß-diketiminate) cyclophane, Cu3(N2)L, with O-atom-transfer reagents or elemental Se affords the oxido-bridged tricopper complex Cu3(µ3-O)L (2) or the corresponding Cu3(µ3-Se)L (4), respectively. For 2 and 4, incorporation of the bridging chalcogen donor was supported by electrospray ionization mass spectrometry and K-edge X-ray absorption spectroscopy (XAS) data. Cu L2,3-edge X-ray absorption data quantify 49.5% Cu 3d character in the lowest unoccupied molecular orbital of 2, with Cu 3d participation decreasing to 33.0% in 4 and 40.8% in the related sulfide cluster Cu3(µ3-S)L (3). Multiedge XAS and UV/visible/near-IR spectra are employed to benchmark density functional theory calculations, which describe the copper-chalcogen interactions as highly covalent across the series of [Cu3(µ-E)]3+ clusters. This result highlights that the metal-ligand covalency is not reserved for more formally oxidized metal centers (i.e., CuIII + O2- vs CuII + O-) but rather is a significant contributor even at more typical ligand-field cases (i.e., Cu3II/II/I + E2-). This bonding is reminiscent of that observed in p-block elements rather than in early-transition-metal complexes.

15.
Inorg Chem ; 56(11): 6755-6762, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28497967

RESUMO

The ability of tetrapyrrolic macrocycles to stabilize unpaired electrons and engage in π-π interactions is essential for many electron-transfer processes in biology and materials engineering. Herein, we demonstrate that the formation of π dimers is recapitulated in complexes of a linear tripyrrolic analogue of naturally occurring pigments derived from heme decomposition. Hexaethyltripyrrindione (H3TD1) coordinates divalent transition metals (i.e., Pd, Cu, Ni) as a stable dianionic radical and was recently described as a robust redox-active ligand. The resulting planar complexes, which feature a delocalized ligand-based electronic spin, are stable at room temperature in air and support ligand-based one-electron processes. We detail the dimerization of neutral tripyrrindione complexes in solution through electron paramagnetic resonance (EPR) and visible absorption spectroscopic methods. Variable-temperature measurements using both EPR and absorption techniques allowed determination of the thermodynamic parameters of π dimerization, which resemble those previously reported for porphyrin radical cations. The inferred electronic structure, featuring coupling of ligand-based electronic spins in the π dimers, is supported by density functional theory (DFT) calculations.

16.
J Am Chem Soc ; 138(37): 12243-51, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27541598

RESUMO

Human calprotectin (CP, S100A8/S100A9 oligomer, MRP-8/MRP-14 oligomer) is an abundant host-defense protein that is involved in the metal-withholding innate immune response. CP coordinates a variety of divalent first-row transition metal ions, which is implicated in its antimicrobial function, and its ability to sequester nutrient Zn(II) ions from microbial pathogens has been recognized for over two decades. CP has two distinct transition-metal-binding sites formed at the S100A8/S100A9 dimer interface, including a histidine-rich site composed of S100A8 residues His17 and His27 and S100A9 residues His91 and His95. In this study, we report that CP binds Zn(II) at this site using a hexahistidine motif, completed by His103 and His105 of the S100A9 C-terminal tail and previously identified as the high-affinity Mn(II) and Fe(II) coordination site. Zn(II) binding at this unique site shields the S100A9 C-terminal tail from proteolytic degradation by proteinase K. X-ray absorption spectroscopy and Zn(II) competition titrations support the formation of a Zn(II)-His6 motif. Microbial growth studies indicate that the hexahistidine motif is important for preventing microbial Zn(II) acquisition from CP by the probiotic Lactobacillus plantarum and the opportunistic human pathogen Candida albicans. The Zn(II)-His6 site of CP expands the known biological coordination chemistry of Zn(II) and provides new insight into how the human innate immune system starves microbes of essential metal nutrients.


Assuntos
Histidina/química , Complexo Antígeno L1 Leucocitário/química , Oligopeptídeos/química , Zinco/química , Humanos , Lactobacillus plantarum , Modelos Moleculares , Ligação Proteica , Conformação Proteica
17.
J Am Chem Soc ; 137(3): 1109-15, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25562523

RESUMO

Here we report the electrocatalytic reduction of protons to hydrogen by a novel S2P2 coordinated nickel complex, [Ni(bdt)(dppf)] (bdt = 1,2-benzenedithiolate, dppf = 1,1'-bis(diphenylphosphino)ferrocene). The catalysis is fast and efficient with a turnover frequency of 1240 s(-1) and an overpotential of only 265 mV for half activity at low acid concentrations. Furthermore, catalysis is possible using a weak acid, and the complex is stable for at least 4 h in acidic solution. Calculations of the system carried out at the density functional level of theory (DFT) are consistent with a mechanism for catalysis in which both protonations take place at the nickel center.


Assuntos
Hidrogênio/química , Níquel/química , Compostos Organometálicos/química , Fosfinas/química , Catálise , Técnicas Eletroquímicas , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/síntese química , Teoria Quântica
18.
J Am Chem Soc ; 137(46): 14785-97, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26575890

RESUMO

Chemical reagents targeting and controlling amyloidogenic peptides have received much attention for helping identify their roles in the pathogenesis of protein-misfolding disorders. Herein, we report a novel strategy for redirecting amyloidogenic peptides into nontoxic, off-pathway aggregates, which utilizes redox properties of a small molecule (DMPD, N,N-dimethyl-p-phenylenediamine) to trigger covalent adduct formation with the peptide. In addition, for the first time, biochemical, biophysical, and molecular dynamics simulation studies have been performed to demonstrate a mechanistic understanding for such an interaction between a small molecule (DMPD) and amyloid-ß (Aß) and its subsequent anti-amyloidogenic activity, which, upon its transformation, generates ligand-peptide adducts via primary amine-dependent intramolecular cross-linking correlated with structural compaction. Furthermore, in vivo efficacy of DMPD toward amyloid pathology and cognitive impairment was evaluated employing 5xFAD mice of Alzheimer's disease (AD). Such a small molecule (DMPD) is indicated to noticeably reduce the overall cerebral amyloid load of soluble Aß forms and amyloid deposits as well as significantly improve cognitive defects in the AD mouse model. Overall, our in vitro and in vivo studies of DMPD toward Aß with the first molecular-level mechanistic investigations present the feasibility of developing new, innovative approaches that employ redox-active compounds without the structural complexity as next-generation chemical tools for amyloid management.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Linhagem Celular , Humanos , Técnicas In Vitro , Simulação de Dinâmica Molecular , Oxirredução
19.
Acc Chem Res ; 47(8): 2332-41, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-24825124

RESUMO

Nickel superoxide dismutase (NiSOD) is a nickel-containing metalloenzyme that catalyzes the disproportionation of superoxide through a ping-pong mechanism that relies on accessing reduced Ni(II) and oxidized Ni(III) oxidation states. NiSOD is the most recently discovered SOD. Unlike the other known SODs (MnSOD, FeSOD, and (CuZn)SOD), which utilize "typical" biological nitrogen and oxygen donors, NiSOD utilizes a rather unexpected ligand set. In the reduced Ni(II) oxidation state, NiSOD utilizes nitrogen ligands derived from the N-terminal amine and an amidate along with two cysteinates sulfur donors. These are unusual biological ligands, especially for an SOD: amine and amidate donors are underrepresented as biological ligands, whereas cysteinates are highly susceptible to oxidative damage. An axial histidine imidazole binds to nickel upon oxidation to Ni(III). This bond is long (2.3-2.6 Å) owing to a tight hydrogen-bonding network. All of the ligating residues to Ni(II) and Ni(III) are found within the first 6 residues from the NiSOD N-terminus. Thus, small nickel-containing metallopeptides derived from the first 6-12 residues of the NiSOD sequence can reproduce many of the properties of NiSOD itself. Using these nickel-containing metallopeptide-based NiSOD mimics, we have shown that the minimal sequence needed for nickel binding and reproduction of the structural, spectroscopic, and functional properties of NiSOD is H2N-HCXXPC. Insight into how NiSOD avoids oxidative damage has also been gained. Using small NiN2S2 complexes and metallopeptide-based mimics, it was shown that the unusual nitrogen donor atoms protect the cysteinates from oxidative damage (both one-electron oxidation and oxygen atom insertion reactions) by fine-tuning the electronic structure of the nickel center. Changing the nitrogen donor set to a bis-amidate or bis-amine nitrogen donor led to catalytically nonviable species owing to nickel-cysteinate bond oxidative damage. Only the amine/amidate nitrogen donor atoms within the NiSOD ligand set produce a catalytically viable species. These metallopeptide-based mimics have also hinted at the detailed mechanism of SOD catalysis by NiSOD. One such aspect is that the axial imidazole likely remains ligated to the Ni center under rapid catalytic conditions (i.e., high superoxide loads). This reduces the degree of structural rearrangement about the nickel center, leading to higher catalytic rates. Metallopeptide-based mimics have also shown that, although an axial ligand to Ni(III) is required for catalysis, the rates are highest when this is a weak interaction, suggesting a reason for the long axial His-Ni(III) bond found in NiSOD. These mimics have also suggested a surprising mechanistic insight: O2(-) reduction via a "H(•)" tunneling event from a R-S(H(+))-Ni(II) moiety to O2(-) is possible. The importance of this mechanism in NiSOD has not been verified.


Assuntos
Níquel/química , Peptídeos/metabolismo , Superóxido Dismutase/metabolismo , Aminas/química , Aminas/metabolismo , Biocatálise , Domínio Catalítico , Dicroísmo Circular , Oxirredução , Peptídeos/química , Teoria Quântica , Especificidade por Substrato , Superóxido Dismutase/química , Superóxidos/química , Superóxidos/metabolismo , Termodinâmica
20.
Inorg Chem ; 54(13): 6245-56, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26067759

RESUMO

A series of Cu4X4(PPh2py)2 compounds (X = Cl (1), Br (2), I (3), PPh2py = 2-(diphenylphosphino)pyridine) were prepared and characterized using X-ray crystallography, NMR, UV-vis, and luminescence spectroscopy. The copper chloride and bromide clusters have Cu4X4 octahedral cores while the copper iodide clusters contain an unprecedented butterfly shaped core. Crystallization of the copper bromide and iodide clusters from the appropriate solvent produced the solvates 2·2CH2Cl2, 2·2CHCl3, and 3·0.5CH2Cl2 where the presence of the lattice solvate influences the overall structural properties. Using TD-DFT calculations, the emission was assigned to a mixed metal- and halide-to-ligand charge transfer, (M + X)LCT. Subtle differences in the copper core geometry and µ-halide bonding perturb the emissions of these copper(I) halide clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA