RESUMO
Nephronophthisis (NPHP), Joubert (JBTS), and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins and discovered three connected modules: "NPHP1-4-8" functioning at the apical surface, "NPHP5-6" at centrosomes, and "MKS" linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes, and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.
Assuntos
Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Transdução de Sinais , Animais , Ataxina-10 , Centrossomo/metabolismo , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Proteínas Hedgehog/metabolismo , Humanos , Doenças Renais Císticas/metabolismo , Camundongos , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Doenças Renais Policísticas/genética , Retinose Pigmentar , Peixe-ZebraRESUMO
Primary cilia are microtubule-based organelles present on most cells that regulate many physiological processes, ranging from maintaining energy homeostasis to renal function. However, the role of these structures in the regulation of behavior remains unknown. To study the role of cilia in behavior, we employ mouse models of the human ciliopathy, Bardet-Biedl Syndrome (BBS). Here, we demonstrate that BBS mice have significant impairments in context fear conditioning, a form of associative learning. Moreover, we show that postnatal deletion of BBS gene function, as well as congenital deletion, specifically in the forebrain, impairs context fear conditioning. Analyses indicated that these behavioral impairments are not the result of impaired hippocampal long-term potentiation. However, our results indicate that these behavioral impairments are the result of impaired hippocampal neurogenesis. Two-week treatment with lithium chloride partially restores the proliferation of hippocampal neurons which leads to a rescue of context fear conditioning. Overall, our results identify a novel role of cilia genes in hippocampal neurogenesis and long-term context fear conditioning.
Assuntos
Síndrome de Bardet-Biedl/genética , Medo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Animais , Síndrome de Bardet-Biedl/tratamento farmacológico , Síndrome de Bardet-Biedl/patologia , Proliferação de Células/efeitos dos fármacos , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Modelos Animais de Doenças , Medo/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Lítio/farmacologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Neurogênese/genética , Neurônios/patologiaRESUMO
A rod-shaped appendage called a primary cilium projects from the soma of most central neurons in the mammalian brain. The importance of cilia within the nervous system is highlighted by the fact that human syndromes linked to primary cilia dysfunction, collectively termed ciliopathies, are associated with numerous neuropathologies, including hyperphagia-induced obesity, neuropsychiatric disorders, and learning and memory deficits. Neuronal cilia are enriched with signaling molecules, including specific G protein-coupled receptors (GPCRs) and their downstream effectors, suggesting they act as sensory organelles that respond to neuromodulators in the extracellular space. We previously showed that GPCR ciliary localization is disrupted in neurons from mouse models of the ciliopathy Bardet-Biedl syndrome (BBS). Based on this finding we hypothesized that mislocalization of ciliary GPCRs may impact receptor signaling and contribute to the BBS phenotypes. Here, we show that disrupting localization of the ciliary GPCR dopamine receptor 1 (D1) in male and female mice, either by loss of a BBS protein or loss of the cilium itself, specifically in D1-expressing neurons, results in obesity. Interestingly, the weight gain is associated with reduced locomotor activity, rather than increased food intake. Moreover, loss of a BBS protein or cilia on D1-expressing neurons leads to a reduction in D1-mediated signaling. Together, these results indicate that cilia impact D1 activity in the nervous system and underscore the importance of neuronal cilia for proper GPCR signaling.SIGNIFICANCE STATEMENT:Most mammalian neurons possess solitary appendages called primary cilia. These rod-shaped structures are enriched with signaling proteins, such as G protein-coupled receptors (GPCRs), suggesting they respond to neuromodulators. This study examines the consequences of disrupting ciliary localization of the GPCR dopamine receptor 1 (D1) in D1-expressing neurons. Remarkably, mice that have either abnormal accumulation of D1 in cilia or loss of D1 ciliary localization become obese. In both cases the obesity is associated with lower locomotor activity rather than overeating. As D1 activation increases locomotor activity, these results are consistent with a reduction in D1 signaling. Indeed, we found that D1-mediated signaling is reduced in brain slices from both mouse models. Thus, cilia impact D1 signaling in the brain.
RESUMO
The BBSome is a protein complex consisting of BBS1, BBS2, BBS4, BBS5, BBS7, BBS8, BBS9 and BBS18 that associates with intraflagellar transport complexes and specializes in ciliary trafficking. In primary cilia, ciliary entry requires the fully assembled BBSome as well as the small GTPase, ARL6 (BBS3). Retinal photoreceptors possess specialized cilia. In light of key structural and functional differences between primary and specialized cilia, we examined the principles of BBSome recruitment to photoreceptor cilia. We performed sucrose gradient fractionation using retinal lysates of Bbs2-/-, Bbs7-/-, Bbs8-/- and Bbs3-/- mice to determine the status of BBSome assembly, then determined localization of BBSome components using immunohistochemistry. Surprisingly, we found that a subcomplex of the BBSome containing at least BBS1, BBS5, BBS8 and BBS9 is recruited to cilia in the absence of BBS2 or BBS7. In contrast, a BBSome subcomplex consisting of BBS1, BBS2, BBS5, BBS7 and BBS9 is found in Bbs8-/- retinas and is denied ciliary entry in photoreceptor cells. In addition, the BBSome remains fully assembled in Bbs3-/- retinas and can be recruited to photoreceptor cilia in the absence of BBS3. We compared phenotypic severity of their retinal degeneration phenotypes. These findings demonstrate that unlike primary cilia, photoreceptor cilia admit a partially assembled BBSome meeting specific requirements. In addition, the recruitment of the BBSome to photoreceptor cilia does not require BBS3. These findings indicate that the ciliary entry of the BBSome is subjected to cell-specific regulation, particularly in cells with highly adapted forms of cilia such as photoreceptors.
Assuntos
Cílios/genética , Complexos Multiproteicos/genética , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Fatores de Ribosilação do ADP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Transporte/genética , Cílios/ultraestrutura , Proteínas do Citoesqueleto/genética , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Complexos Multiproteicos/metabolismo , Neuritos/metabolismo , Proteínas de Ligação a Fosfato/genética , Células Fotorreceptoras/patologia , Células Fotorreceptoras/ultraestrutura , Transporte Proteico , Proteínas/genética , Retina/patologia , Relação Estrutura-AtividadeRESUMO
The field of gene therapy has made significant strides over the last several decades toward the treatment of previously untreatable genetic disease. Gene therapy techniques have been aimed at mitigating disease features of recessive and dominant disorders, as well as several cancers and other diseases. While there have been numerous disease targets of gene therapy trials, only four therapies have reached FDA and/or EMA approval for clinical use. Gene correction using CRISPR-Cas9 is an extension of gene therapy that has received considerable attention in recent years and boasts many possible uses beyond classical gene therapy approaches. While there is significant therapeutic potential using gene therapy and gene correction strategies, a number of hurdles remain to be overcome before they become more common in clinical use, particularly with regards to safety and efficacy. As research progresses in this exciting field, it is likely that these therapies will become first-line treatments and will have tremendous positive impacts on the lives of patients with genetic disorders.
Assuntos
Edição de Genes , Neoplasias , Sistemas CRISPR-Cas , Edição de Genes/métodos , Terapia Genética/métodos , Humanos , Neoplasias/genética , Neoplasias/terapiaRESUMO
Bardet-Biedl syndrome (BBS) is a rare ciliopathy for which there are no current effective treatments. BBS is a genetically heterogeneous disease, though the M390R mutation in BBS1 is involved in ~25% of all genetic diagnoses of BBS. The principle features of BBS include retinal degeneration, obesity, male infertility, polydactyly, intellectual disability, and renal abnormalities. Patients with mutations in BBS genes often present with night blindness within the first decade of life, which progresses to complete blindness. This is due to progressive loss of photoreceptor cells. Male infertility is caused by a lack of spermatozoa flagella, rendering them immobile. In this study, we have crossed the wild-type human BBS1 gene, driven by the CAG promoter, onto the Bbs1M390R/M390R mouse model to determine if ectopic expression of BBS1 rescues male infertility and retinal degeneration. qRT-PCR indicates that the BBS1 transgene is expressed in multiple tissues throughout the mouse, with the highest expression seen in the testes, and much lower expression in the eye and hypothalamus. Immunohistochemistry of the transgene in the eye showed little if any expression in the photoreceptor outer nuclear layer. When male Bbs1M30R/M390R;BBS1TG+ mice are housed with WT females, they are able to sire offspring, indicating that the male infertility phenotype of BBS is rescued by the transgene. Using electroretinography (ERGs) to measure retinal function and optical coherence tomography to measure retinal thickness, we show that the transgene does not confer protection against retinal degeneration in Bbs1M300R/M390R;BBS1TG+ mice. The results of this study indicate that the male infertility aspect of BBS is an attractive target for gene therapy.
Assuntos
Síndrome de Bardet-Biedl , Infertilidade Masculina , Degeneração Retiniana , Animais , Síndrome de Bardet-Biedl/diagnóstico , Síndrome de Bardet-Biedl/genética , Modelos Animais de Doenças , Expressão Ectópica do Gene , Feminino , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/terapia , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Degeneração Retiniana/genética , Degeneração Retiniana/terapiaRESUMO
Bardet-Biedl syndrome (BBS) is a hereditary genetic disorder that results in numerous clinical manifestations including olfactory dysfunction. Of at least 21 BBS-related genes that can carry multiple mutations, a pathogenic mutation, BBS1M390R, is the single most common mutation of clinically diagnosed BBS outcomes. While the deletion of BBS-related genes in mice can cause variable penetrance in different organ systems, the impact of the Bbs1M390R mutation in the olfactory system remains unclear. Using a clinically relevant knock-in mouse model homozygous for Bbs1M390R, we investigated the impact of the mutation on the olfactory system and tested the potential of viral-mediated, wildtype gene replacement therapy to rescue smell loss. The cilia of olfactory sensory neurons (OSNs) in Bbs1M390R/M390R mice were significantly shorter and fewer than those of wild-type mice. Also, both peripheral cellular odor detection and synaptic-dependent activity in the olfactory bulb were significantly decreased in the mutant mice. Furthermore, to gain insight into the degree to which perceptual features are impaired in the mutant mice, we used whole-body plethysmography to quantitatively measure odor-evoked sniffing. The Bbs1M390R/M390R mice showed significantly higher odor detection thresholds (reduced odor sensitivity) compared to wild-type mice; however, their odor discrimination acuity was still well maintained. Importantly, adenoviral expression of Bbs1 in OSNs restored cilia length and re-established both peripheral odorant detection and odor perception. Together, our findings further expand our understanding for the development of gene therapeutic treatment for congenital ciliopathies in the olfactory system.
Assuntos
Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/terapia , Ciliopatias/genética , Ciliopatias/terapia , Percepção Olfatória/genética , Animais , Cílios/genética , Modelos Animais de Doenças , Feminino , Terapia Genética/métodos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Bulbo Olfatório/patologia , Células Receptoras Sensoriais/patologia , Olfato/genéticaRESUMO
Retinitis pigmentosa (RP) is an inherited retinal degenerative disease with severe vision impairment leading to blindness. About 10-15% of RP cases are caused by mutations in the RPGR gene, with RPGR mutations accounting for 70% of X-linked RP cases. The mechanism by which RPGR mutations cause photoreceptor cell dysfunction is not well understood. In this study, we show that the two isoforms of RPGR (RPGR1-19 and RPGRORF15) interact with endogenous PDE6D, INPP5E, and RPGRIP1L. The RPGR1-19 isoform contains two PDE6D binding sites with the C-terminal prenylation site being the predominant PDE6D binding site. The C terminus of RPGR1-19 that contains the prenylation site regulates its interaction with PDE6D, INPP5E, and RPGRIP1L. Only the RPGR1-19 isoform localizes to cilia in cultured RPE1 cells. Missense variations found in RPGR patients disrupt the interaction between RPGR isoforms and their endogenous interactors INPP5E, PDE6D, and RPGRIP1L. We evaluated a RPGR missense variation (M58K) found in a family with X-linked retinitis pigmentosa (XLRP) and show that this missense variation disrupts the interaction of RPGR isoforms with their endogenous interactors. The M58K variation also disrupts the ciliary localization of the RPGR1-19 isoform. Using this assay, we also show that some of the RPGR missense variants reported in the literature might not actually be disease causing. Our data establishes an in vitro assay that can be used to validate the potential pathogenicity of RPGR missense variants.
Assuntos
Proteínas do Olho/genética , Mutação de Sentido Incorreto/genética , Proteínas Nucleares/genética , Domínios e Motivos de Interação entre Proteínas/genética , Retinose Pigmentar/genética , Animais , Sítios de Ligação/genética , Linhagem Celular , Cílios/genética , Células HEK293 , Humanos , Camundongos , Isoformas de Proteínas/genéticaRESUMO
BACKGROUND: Glaucoma is a leading cause of visual disability and blindness. Release of iris pigment within the eye, pigment dispersion syndrome (PDS), can lead to one type of glaucoma known as pigmentary glaucoma. PDS has a genetic component, however, the genes involved with this condition are largely unknown. We sought to discover genes that cause PDS by testing cohorts of patients and controls for mutations using a tiered analysis of exome data. RESULTS: Our primary analysis evaluated melanosome-related genes that cause dispersion of iris pigment in mice (TYRP1, GPNMB, LYST, DCT, and MITF). We identified rare mutations, but they were not statistically enriched in PDS patients. Our secondary analyses examined PMEL (previously linked with PDS), MRAP, and 19 other genes. Four MRAP mutations were identified in PDS cases but not in controls (p = 0.016). Immunohistochemical analysis of human donor eyes revealed abundant MRAP protein in the iris, the source of pigment in PDS. However, analysis of MRAP in additional cohorts (415 cases and 1645 controls) did not support an association with PDS. We also did not confirm a link between PMEL and PDS in our cohorts due to lack of reported mutations and similar frequency of the variants in PDS patients as in control subjects. CONCLUSIONS: We did not detect a statistical enrichment of mutations in melanosome-related genes in human PDS patients and we found conflicting data about the likely pathogenicity of MRAP mutations. PDS may have a complex genetic basis that is not easily unraveled with exome analyses.
Assuntos
Exoma , Glaucoma de Ângulo Aberto , Animais , Glaucoma de Ângulo Aberto/genética , Humanos , Iris , Glicoproteínas de Membrana , Camundongos , Pigmentação , Sequenciamento do ExomaRESUMO
Bardet-Beidl syndrome (BBS) manifests from genetic mutations encoding for one or more BBS proteins. BBS4 loss impacts olfactory ciliation and odor detection, yet the cellular mechanisms remain unclear. Here, we report that Bbs4-/- mice exhibit shorter and fewer olfactory sensory neuron (OSN) cilia despite retaining odorant receptor localization. Within Bbs4-/- OSN cilia, we observed asynchronous rates of IFT-A/B particle movements, indicating miscoordination in IFT complex trafficking. Within the OSN dendritic knob, the basal bodies are dynamic, with incorporation of ectopically expressed centrin-2 and γ-tubulin occurring after nascent ciliogenesis. Importantly, BBS4 loss results in the reduction of basal body numbers separate from cilia loss. Adenoviral expression of BBS4 restored OSN cilia lengths and was sufficient to re-establish odor detection, but failed to rescue ciliary and basal body numbers. Our results yield a model for the plurality of BBS4 functions in OSNs that includes intraciliary and periciliary roles that can explain the loss of cilia and penetrance of ciliopathy phenotypes in olfactory neurons.
Assuntos
Síndrome de Bardet-Biedl/metabolismo , Cílios/fisiologia , Flagelos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Animais , Corpos Basais/patologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Fenótipo , Transporte Proteico , Olfato , Combinação Trimetoprima e Sulfametoxazol/metabolismo , Tubulina (Proteína)/metabolismoRESUMO
BACKGROUND: Oligoteratoasthenozoospermia (OTA) combines deteriorated quantity, morphology and motility of the sperm, resulting in male factor infertility. METHODS: We used whole genome genotyping and exome sequencing to identify the mutation causing OTA in four men in a consanguineous Bedouin family. We expressed the normal and mutated proteins tagged with c-Myc at the carboxy termini by transfection with pCDNA3.1 plasmid constructs to evaluate the effects on protein stability in HEK293 cells and on the kinetics of actin repolymerisation in retinal pigment epithelium cells. Patients' sperm samples were visualised by transmission electron microscopy to determine axoneme structures and were stained with fluorescent phalloidin to visualise the fibrillar (F)-actin. RESULTS: A homozygous missense mutation in Ciliogenesis Associated TTC17 Interacting Protein (CATIP): c. T103A, p. Phe35Ile, a gene encoding a protein important in actin organisation and ciliogenesis, was identified as the causative mutation with a LOD score of 3.25. The mutation reduces the protein stability compared with the normal protein. Furthermore, overexpression of the normal protein, but not the mutated protein, inhibits repolymerisation of actin after disruption with cytochalasin D. A high percentage of spermatozoa axonemes from patients have abnormalities, as well as disturbances in the distribution of F-actin. CONCLUSION: This is the first report of a recessive mutation in CATIP in humans. The identified mutation may contribute to asthenozoospermia by its involvement in actin polymerisation and on the actin cytoskeleton. A mouse knockout homozygote for CATIP was reported to demonstrate male infertility as the sole phenotype.
RESUMO
Our previous genome-wide association study (GWAS) for sagittal nonsyndromic craniosynostosis (sNCS) provided important insights into the genetics of midline CS. In this study, we performed a GWAS for a second midline NCS, metopic NCS (mNCS), using 215 non-Hispanic white case-parent triads. We identified six variants with genome-wide significance (P ≤ 5 × 10-8): rs781716 (P = 4.71 × 10-9; odds ratio [OR] = 2.44) intronic to SPRY3; rs6127972 (P = 4.41 × 10-8; OR = 2.17) intronic to BMP7; rs62590971 (P = 6.22 × 10-9; OR = 0.34), located ~ 155 kb upstream from TGIF2LX; and rs2522623, rs2573826, and rs2754857, all intronic to PCDH11X (P = 1.76 × 10-8, OR = 0.45; P = 3.31 × 10-8, OR = 0.45; P = 1.09 × 10-8, OR = 0.44, respectively). We performed a replication study of these variants using an independent non-Hispanic white sample of 194 unrelated mNCS cases and 333 unaffected controls; only the association for rs6127972 (P = 0.004, OR = 1.45; meta-analysis P = 1.27 × 10-8, OR = 1.74) was replicated. Our meta-analysis examining single nucleotide polymorphisms common to both our mNCS and sNCS studies showed the strongest association for rs6127972 (P = 1.16 × 10-6). Our imputation analysis identified a linkage disequilibrium block encompassing rs6127972, which contained an enhancer overlapping a CTCF transcription factor binding site (chr20:55,798,821-55,798,917) that was significantly hypomethylated in mesenchymal stem cells derived from fused metopic compared to open sutures from the same probands. This study provides additional insights into genetic factors in midline CS.
Assuntos
Proteína Morfogenética Óssea 7/genética , Craniossinostoses/genética , Variação Genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Metilação de DNA , Genes Reporter , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Íntrons/genética , Desequilíbrio de Ligação , Regiões Promotoras Genéticas/genética , Fatores de RiscoRESUMO
Mutations in BBS6 cause two clinically distinct syndromes, Bardet-Biedl syndrome (BBS), a syndrome caused by defects in cilia transport and function, as well as McKusick-Kaufman syndrome, a genetic disorder characterized by congenital heart defects. Congenital heart defects are rare in BBS, and McKusick-Kaufman syndrome patients do not develop retinitis pigmentosa. Therefore, the McKusick-Kaufman syndrome allele may highlight cellular functions of BBS6 distinct from the presently understood functions in the cilia. In support, we find that the McKusick-Kaufman syndrome disease-associated allele, BBS6H84Y; A242S, maintains cilia function. We demonstrate that BBS6 is actively transported between the cytoplasm and nucleus, and that BBS6H84Y; A242S, is defective in this transport. We developed a transgenic zebrafish with inducible bbs6 to identify novel binding partners of BBS6, and we find interaction with the SWI/SNF chromatin remodeling protein Smarcc1a (SMARCC1 in humans). We demonstrate that through this interaction, BBS6 modulates the sub-cellular localization of SMARCC1 and find, by transcriptional profiling, similar transcriptional changes following smarcc1a and bbs6 manipulation. Our work identifies a new function for BBS6 in nuclear-cytoplasmic transport, and provides insight into the disease mechanism underlying the congenital heart defects in McKusick-Kaufman syndrome patients.
Assuntos
Anormalidades Múltiplas/genética , Síndrome de Bardet-Biedl/genética , Chaperoninas do Grupo II/genética , Cardiopatias Congênitas/genética , Hidrocolpos/genética , Polidactilia/genética , Fatores de Transcrição/genética , Doenças Uterinas/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Transporte Ativo do Núcleo Celular/genética , Animais , Animais Geneticamente Modificados/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patologia , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Cílios/metabolismo , Cílios/patologia , Citoplasma/metabolismo , Modelos Animais de Doenças , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Humanos , Hidrocolpos/metabolismo , Hidrocolpos/patologia , Camundongos , Mutação , Polidactilia/metabolismo , Polidactilia/patologia , Transporte Proteico/genética , Fatores de Transcrição/biossíntese , Doenças Uterinas/metabolismo , Doenças Uterinas/patologia , Peixe-Zebra/genéticaRESUMO
Genetic mutations disrupting the structure and function of primary cilia cause various inherited retinal diseases in humans. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous, pleiotropic ciliopathy characterized by retinal degeneration, obesity, postaxial polydactyly, intellectual disability, and genital and renal abnormalities. To gain insight into the mechanisms of retinal degeneration in BBS, we developed a congenital knockout mouse of Bbs8, as well as conditional mouse models in which function of the BBSome (a protein complex that mediates ciliary trafficking) can be temporally inactivated or restored. We demonstrate that BBS mutant mice have defects in retinal outer segment morphogenesis. We further demonstrate that removal of Bbs8 in adult mice affects photoreceptor function and disrupts the structural integrity of the outer segment. Notably, using a mouse model in which a gene trap inhibiting Bbs8 gene expression can be removed by an inducible FLP recombinase, we show that when BBS8 is restored in immature retinas with malformed outer segments, outer segment extension can resume normally and malformed outer segment discs are displaced distally by normal outer segment structures. Over time, the retinas of the rescued mice become morphologically and functionally normal, indicating that there is a window of plasticity when initial retinal outer segment morphogenesis defects can be ameliorated.
Assuntos
Morfogênese/fisiologia , Células Fotorreceptoras/metabolismo , Transporte Proteico/fisiologia , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patologia , Cílios/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Morfogênese/genética , Mutação/genética , Transporte Proteico/genética , Retina/metabolismo , Retina/fisiologiaRESUMO
Primary open-angle glaucoma (POAG) is a leading cause of irreversible vision loss worldwide, with elevated intraocular pressure (IOP) a major risk factor. Myocilin (MYOC) dominant gain-of-function mutations have been reported in â¼4% of POAG cases. MYOC mutations result in protein misfolding, leading to endoplasmic reticulum (ER) stress in the trabecular meshwork (TM), the tissue that regulates IOP. We use CRISPR-Cas9-mediated genome editing in cultured human TM cells and in a MYOC mouse model of POAG to knock down expression of mutant MYOC, resulting in relief of ER stress. In vivo genome editing results in lower IOP and prevents further glaucomatous damage. Importantly, using an ex vivo human organ culture system, we demonstrate the feasibility of human genome editing in the eye for this important disease.
Assuntos
Sistemas CRISPR-Cas , Proteínas do Citoesqueleto/genética , Proteínas do Olho/genética , Edição de Genes , Terapia Genética/métodos , Glaucoma de Ângulo Aberto/terapia , Glicoproteínas/genética , Animais , Linhagem Celular , Glaucoma de Ângulo Aberto/genética , Humanos , Técnicas In Vitro , CamundongosRESUMO
Elevation of intraocular pressure (IOP) is a serious adverse effect of glucocorticoid (GC) therapy. Increased extracellular matrix (ECM) accumulation and endoplasmic reticulum (ER) stress in the trabecular meshwork (TM) is associated with GC-induced IOP elevation. However, the molecular mechanisms by which GCs induce ECM accumulation and ER stress in the TM have not been determined. Here, we show that a potent GC, dexamethasone (Dex), activates transforming growth factor ß (TGFß) signaling, leading to GC-induced ECM accumulation, ER stress, and IOP elevation. Dex increased both the precursor and bioactive forms of TGFß2 in conditioned medium and activated TGFß-induced SMAD signaling in primary human TM cells. Dex also activated TGFß2 in the aqueous humor and TM of a mouse model of Dex-induced ocular hypertension. We further show that Smad3-/- mice are protected from Dex-induced ocular hypertension, ER stress, and ECM accumulation. Moreover, treating WT mice with a selective TGFß receptor kinase I inhibitor, LY364947, significantly decreased Dex-induced ocular hypertension. Of note, knockdown of the ER stress-induced activating transcription factor 4 (ATF4), or C/EBP homologous protein (CHOP), completely prevented Dex-induced TGFß2 activation and ECM accumulation in TM cells. These observations suggested that chronic ER stress promotes Dex-induced ocular hypertension via TGFß signaling. Our results indicate that TGFß2 signaling plays a central role in GC-induced ocular hypertension and provides therapeutic targets for GC-induced ocular hypertension.
Assuntos
Dexametasona/toxicidade , Glucocorticoides/toxicidade , Hipertensão Ocular/patologia , Proteína Smad3/fisiologia , Malha Trabecular/patologia , Fator de Crescimento Transformador beta2/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipertensão Ocular/induzido quimicamente , Hipertensão Ocular/metabolismo , Malha Trabecular/efeitos dos fármacos , Fator de Crescimento Transformador beta2/genéticaRESUMO
Glaucoma is a common cause of vision loss or blindness and reduction of intraocular pressure (IOP) has been proven beneficial in a large fraction of glaucoma patients. The IOP is maintained by the trabecular meshwork (TM) and the elevation of IOP in open-angle glaucoma is associated with dysfunction and loss of the postmitotic cells residing within this tissue. To determine if IOP control can be maintained by replacing lost TM cells, we transplanted TM-like cells derived from induced pluripotent stem cells into the anterior chamber of a transgenic mouse model of glaucoma. Transplantation led to significantly reduced IOP and improved aqueous humor outflow facility, which was sustained for at least 9 wk. The ability to maintain normal IOP engendered survival of retinal ganglion cells, whose loss is ultimately the cause for reduced vision in glaucoma. In vivo and in vitro analyses demonstrated higher TM cellularity in treated mice compared with littermate controls and indicated that this increase is primarily because of a proliferative response of endogenous TM cells. Thus, our study provides in vivo demonstration that regeneration of the glaucomatous TM is possible and points toward novel approaches in the treatment of this disease.
Assuntos
Modelos Animais de Doenças , Glaucoma/terapia , Transplante de Células-Tronco , Malha Trabecular/patologia , Animais , Proteínas do Citoesqueleto/genética , Proteínas do Olho/genética , Glaucoma/patologia , Glaucoma/fisiopatologia , Glicoproteínas/genética , Humanos , Pressão Intraocular , Camundongos , Camundongos Transgênicos , MutaçãoRESUMO
Bardet-Biedl syndrome (BBS) is a highly pleiotropic autosomal recessive disorder associated with a wide range of phenotypes including obesity. However, the underlying mechanism remains unclear. Here, we show that neuronal BBSome is a critical determinant of energy balance through its role in the regulation of the trafficking of the long signaling form of the leptin receptor (LRb). Targeted disruption of the BBSome by deleting the Bbs1 gene from the nervous system causes obesity in mice, and this phenotype is reproduced by ablation of the Bbs1 gene selectively in the LRb-expressing cells, but not from adipocytes. Obesity developed as a consequence of both increased food intake and decreased energy expenditure in mice lacking the Bbs1 gene in LRb-expressing cells. Strikingly, the well-known role of BBS proteins in the regulation of ciliary formation and function is unlikely to account for the obesogenic effect of BBS1 loss as disruption of the intraflagellar transport (IFT) machinery required for ciliogenesis by deleting the Ift88 gene in LRb-expressing cells caused a marginal increase in body weight and adiposity. Instead, we demonstrate that silencing BBS proteins, but not IFT88, impair the trafficking of the LRb to the plasma membrane leading to central leptin resistance in a manner independent of obesity. Our data also demonstrate that postnatal deletion of the Bbs1 gene in the mediobasal hypothalamus can cause obesity in mice, arguing against an early neurodevelopmental origin of obesity in BBS. Our results depict a novel mechanism underlying energy imbalance and obesity in BBS with potential implications in common forms of human obesity.
Assuntos
Síndrome de Bardet-Biedl/metabolismo , Membrana Celular/metabolismo , Receptores para Leptina/metabolismo , Animais , Síndrome de Bardet-Biedl/genética , Membrana Celular/genética , Metabolismo Energético/fisiologia , Feminino , Hipotálamo/fisiologia , Camundongos Mutantes , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Transporte Proteico , Receptores para Leptina/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
The membrane of the primary cilium is a highly specialized compartment that organizes proteins to achieve spatially ordered signaling. Disrupting ciliary organization leads to diseases called ciliopathies, with phenotypes ranging from retinal degeneration and cystic kidneys to neural tube defects. How proteins are selectively transported to and organized in the primary cilium remains unclear. Using a proteomic approach, we identified the ARL3 effector UNC119 as a binding partner of the myristoylated ciliopathy protein nephrocystin-3 (NPHP3). We mapped UNC119 binding to the N-terminal 200 residues of NPHP3 and found the interaction requires myristoylation. Creating directed mutants predicted from a structural model of the UNC119-myristate complex, we identified highly conserved phenylalanines within a hydrophobic ß sandwich to be essential for myristate binding. Furthermore, we found that binding of ARL3-GTP serves to release myristoylated cargo from UNC119. Finally, we showed that ARL3, UNC119b (but not UNC119a), and the ARL3 GAP Retinitis Pigmentosa 2 (RP2) are required for NPHP3 ciliary targeting and that targeting requires UNC119b myristoyl-binding activity. Our results uncover a selective, membrane targeting GTPase cycle that delivers myristoylated proteins to the ciliary membrane and suggest that other myristoylated proteins may be similarly targeted to specialized membrane domains.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Caenorhabditis elegans , Cílios/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Cinesinas , Proteínas Monoméricas de Ligação ao GTP , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular , Cílios/enzimologia , GTP Fosfo-Hidrolases/genética , Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismoRESUMO
Bardet Biedl syndrome (BBS) is a multisystem genetically heterogeneous ciliopathy that most commonly leads to obesity, photoreceptor degeneration, digit anomalies, genito-urinary abnormalities, as well as cognitive impairment with autism, among other features. Sequencing of a DNA sample from a 17-year-old female affected with BBS did not identify any mutation in the known BBS genes. Whole-genome sequencing identified a novel loss-of-function disease-causing homozygous mutation (K102*) in C8ORF37, a gene coding for a cilia protein. The proband was overweight (body mass index 29.1) with a slowly progressive rod-cone dystrophy, a mild learning difficulty, high myopia, three limb post-axial polydactyly, horseshoe kidney, abnormally positioned uterus and elevated liver enzymes. Mutations in C8ORF37 were previously associated with severe autosomal recessive retinal dystrophies (retinitis pigmentosa RP64 and cone-rod dystrophy CORD16) but not BBS. To elucidate the functional role of C8ORF37 in a vertebrate system, we performed gene knockdown in Danio rerio and assessed the cardinal features of BBS and visual function. Knockdown of c8orf37 resulted in impaired visual behavior and BBS-related phenotypes, specifically, defects in the formation of Kupffer's vesicle and delays in retrograde transport. Specificity of these phenotypes to BBS knockdown was shown with rescue experiments. Over-expression of human missense mutations in zebrafish also resulted in impaired visual behavior and BBS-related phenotypes. This is the first functional validation and association of C8ORF37 mutations with the BBS phenotype, which identifies BBS21. The zebrafish studies hereby show that C8ORF37 variants underlie clinically diagnosed BBS-related phenotypes as well as isolated retinal degeneration.