Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Mol Cell ; 82(14): 2696-2713.e9, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35716669

RESUMO

Cancer cells are highly heterogeneous at the transcriptional level and epigenetic state. Methods to study epigenetic heterogeneity are limited in throughput and information obtained per cell. Here, we adapted cytometry by time-of-flight (CyTOF) to analyze a wide panel of histone modifications in primary tumor-derived lines of diffused intrinsic pontine glioma (DIPG). DIPG is a lethal glioma, driven by a histone H3 lysine 27 mutation (H3-K27M). We identified two epigenetically distinct subpopulations in DIPG, reflecting inherent heterogeneity in expression of the mutant histone. These two subpopulations are robust across tumor lines derived from different patients and show differential proliferation capacity and expression of stem cell and differentiation markers. Moreover, we demonstrate the use of these high-dimensional data to elucidate potential interactions between histone modifications and epigenetic alterations during the cell cycle. Our work establishes new concepts for the analysis of epigenetic heterogeneity in cancer that could be applied to diverse biological systems.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/patologia , Cromatina/genética , Epigênese Genética , Glioma/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Mutação
2.
Mol Cell ; 82(1): 106-122.e9, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34875212

RESUMO

The fidelity of the early embryonic program is underlined by tight regulation of the chromatin. Yet, how the chromatin is organized to prohibit the reversal of the developmental program remains unclear. Specifically, the totipotency-to-pluripotency transition marks one of the most dramatic events to the chromatin, and yet, the nature of histone alterations underlying this process is incompletely characterized. Here, we show that linker histone H1 is post-translationally modulated by SUMO2/3, which facilitates its fixation onto ultra-condensed heterochromatin in embryonic stem cells (ESCs). Upon SUMOylation depletion, the chromatin becomes de-compacted and H1 is evicted, leading to totipotency reactivation. Furthermore, we show that H1 and SUMO2/3 jointly mediate the repression of totipotent elements. Lastly, we demonstrate that preventing SUMOylation on H1 abrogates its ability to repress the totipotency program in ESCs. Collectively, our findings unravel a critical role for SUMOylation of H1 in facilitating chromatin repression and desolation of the totipotent identity.


Assuntos
Blastocisto/metabolismo , Linhagem da Célula , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Blastocisto/citologia , Cromatina/genética , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Histonas/genética , Humanos , Camundongos , Fenótipo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitinas/genética , Ubiquitinas/metabolismo
3.
Nucleic Acids Res ; 51(4): 1662-1673, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36156096

RESUMO

The histone H3 variant, H3.3, is localized at specific regions in the genome, especially promoters and active enhancers, and has been shown to play important roles in development. A lysine to methionine substitution in position 27 (H3.3K27M) is a main cause of Diffuse Intrinsic Pontine Glioma (specifically Diffuse Midline Glioma, K27M-mutant), a lethal type of pediatric cancer. H3.3K27M has a dominant-negative effect by inhibiting the Polycomb Repressor Complex 2 (PRC2) activity. Here, we studied the immediate, genome-wide, consequences of the H3.3K27M mutation independent of PRC2 activity. We developed Doxycycline (Dox)-inducible mouse embryonic stem cells (ESCs) carrying a single extra copy of WT-H3.3, H3.3K27M and H3.3K27L, all fused to HA. We performed RNA-Seq and ChIP-Seq at different times following Dox induction in undifferentiated and differentiated ESCs. We find increased binding of H3.3 around transcription start sites in cells expressing both H3.3K27M and H3.3K27L compared with WT, but not in cells treated with PRC2 inhibitors. Differentiated cells carrying either H3.3K27M or H3.3K27L retain expression of ESC-active genes, in expense of expression of genes related to neuronal differentiation. Taken together, our data suggest that a modifiable H3.3K27 is required for proper histone incorporation and cellular maturation, independent of PRC2 activity.


Assuntos
Células-Tronco Embrionárias , Histonas , Animais , Camundongos , Diferenciação Celular , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Glioma/genética , Histonas/metabolismo , Mutação , Proteínas do Grupo Polycomb/metabolismo , Doxiciclina/farmacologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo
5.
Mol Cell ; 46(5): 662-73, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22681888

RESUMO

Embryonic stem cells (ESCs) maintain high genomic plasticity, which is essential for their capacity to enter diverse differentiation pathways. Posttranscriptional modifications of chromatin histones play a pivotal role in maintaining this plasticity. We now report that one such modification, monoubiquitylation of histone H2B on lysine 120 (H2Bub1), catalyzed by the E3 ligase RNF20, increases during ESC differentiation and is required for efficient execution of this process. This increase is particularly important for the transcriptional induction of relatively long genes during ESC differentiation. Furthermore, we identify the deubiquitinase USP44 as a negative regulator of H2B ubiquitylation, whose downregulation during ESC differentiation contributes to the increase in H2Bub1. Our findings suggest that optimal ESC differentiation requires dynamic changes in H2B ubiquitylation patterns, which must occur in a timely and well-coordinated manner.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/citologia , Endopeptidases/fisiologia , Histonas/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Montagem e Desmontagem da Cromatina , Regulação para Baixo , Células-Tronco Embrionárias/metabolismo , Endopeptidases/metabolismo , Epigênese Genética , Humanos , Camundongos , Modelos Genéticos , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina , Ubiquitinação
7.
Mol Cell ; 42(4): 477-88, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21596312

RESUMO

hBRE1/RNF20 is the major E3 ubiquitin ligase for histone H2B. RNF20 depletion causes a global reduction of monoubiquitylated H2B (H2Bub) levels and augments the expression of growth-promoting, pro-oncogenic genes. Those genes reside preferentially in compact chromatin and are inefficiently transcribed under basal conditions. We now report that RNF20, presumably via H2Bub, selectively represses those genes by interfering with chromatin recruitment of TFIIS, a factor capable of relieving stalled RNA polymerase II. RNF20 inhibits the interaction between TFIIS and the PAF1 complex and hinders transcriptional elongation. TFIIS ablation selectively abolishes the upregulation of those genes upon RNF20 depletion and attenuates the cellular response to EGF. Consistent with its positive role in transcription of pro-oncogenic genes, TFIIS expression is elevated in various human tumors. Our findings provide a molecular mechanism for selective gene repression by RNF20 and position TFIIS as a key target of RNF20's tumor suppressor activity.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Cromatina/metabolismo , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição
8.
Mol Cell ; 42(4): 524-35, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21596316

RESUMO

Normal cells require continuous exposure to growth factors in order to cross a restriction point and commit to cell-cycle progression. This can be replaced by two short, appropriately spaced pulses of growth factors, where the first pulse primes a process, which is completed by the second pulse, and enables restriction point crossing. Through integration of comprehensive proteomic and transcriptomic analyses of each pulse, we identified three processes that regulate restriction point crossing: (1) The first pulse induces essential metabolic enzymes and activates p53-dependent restraining processes. (2) The second pulse eliminates, via the PI3K/AKT pathway, the suppressive action of p53, as well as (3) sets an ERK-EGR1 threshold mechanism, which digitizes graded external signals into an all-or-none decision obligatory for S phase entry. Together, our findings uncover two gating mechanisms, which ensure that cells ignore fortuitous growth factors and undergo proliferation only in response to consistent mitogenic signals.


Assuntos
Mama/citologia , Fator de Crescimento Epidérmico/fisiologia , Células Epiteliais/citologia , Mitose , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Mama/efeitos dos fármacos , Linhagem Celular , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Mitose/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Transcrição Gênica
9.
Mol Cell ; 41(5): 529-42, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21362549

RESUMO

The cellular response to DNA double-strand breaks (DSBs) is mobilized by the protein kinase ATM, which phosphorylates key players in the DNA damage response (DDR) network. A major question is how ATM controls DSB repair. Optimal repair requires chromatin relaxation at damaged sites. Chromatin reorganization is coupled to dynamic alterations in histone posttranslational modifications. Here, we show that in human cells, DSBs induce monoubiquitylation of histone H2B, a modification that is associated in undamaged cells with transcription elongation. We find that this process relies on recruitment to DSB sites and ATM-dependent phosphorylation of the responsible E3 ubiquitin ligase: the RNF20-RNF40 heterodimer. H2B monoubiquitylation is required for timely recruitment of players in the two major DSB repair pathways-nonhomologous end-joining and homologous recombination repair-and optimal repair via both pathways. Our data and previous data suggest a two-stage model for chromatin decondensation that facilitates DSB repair.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina/química , Proteínas Mutadas de Ataxia Telangiectasia , Cromatina/química , Cromatina/metabolismo , Ensaio Cometa/métodos , Células HeLa , Histonas/química , Humanos , Cinética , Fosforilação , Processamento de Proteína Pós-Traducional , Interferência de RNA , Recombinação Genética , Ubiquitina-Proteína Ligases/metabolismo
10.
PLoS Biol ; 9(7): e1001106, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21811398

RESUMO

mRNA levels are determined by the balance between transcription and mRNA degradation, and while transcription has been extensively studied, very little is known regarding the regulation of mRNA degradation and its coordination with transcription. Here we examine the evolution of mRNA degradation rates between two closely related yeast species. Surprisingly, we find that around half of the evolutionary changes in mRNA degradation were coupled to transcriptional changes that exert opposite effects on mRNA levels. Analysis of mRNA degradation rates in an interspecific hybrid further suggests that opposite evolutionary changes in transcription and in mRNA degradation are mechanistically coupled and were generated by the same individual mutations. Coupled changes are associated with divergence of two complexes that were previously implicated both in transcription and in mRNA degradation (Rpb4/7 and Ccr4-Not), as well as with sequence divergence of transcription factor binding motifs. These results suggest that an opposite coupling between the regulation of transcription and that of mRNA degradation has shaped the evolution of gene regulation in yeast.


Assuntos
Evolução Molecular , Estabilidade de RNA , Saccharomyces/genética , Transcrição Gênica , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , RNA Polimerase II/genética , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Ribonucleases/genética , Saccharomyces/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Nat Metab ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858597

RESUMO

Downregulation of the urea cycle enzyme argininosuccinate synthase (ASS1) in multiple tumors is associated with a poor prognosis partly because of the metabolic diversion of cytosolic aspartate for pyrimidine synthesis, supporting proliferation and mutagenesis owing to nucleotide imbalance. Here, we find that prolonged loss of ASS1 promotes DNA damage in colon cancer cells and fibroblasts from subjects with citrullinemia type I. Following acute induction of DNA damage with doxorubicin, ASS1 expression is elevated in the cytosol and the nucleus with at least a partial dependency on p53; ASS1 metabolically restrains cell cycle progression in the cytosol by restricting nucleotide synthesis. In the nucleus, ASS1 and ASL generate fumarate for the succination of SMARCC1, destabilizing the chromatin-remodeling complex SMARCC1-SNF5 to decrease gene transcription, specifically in a subset of the p53-regulated cell cycle genes. Thus, following DNA damage, ASS1 is part of the p53 network that pauses cell cycle progression, enabling genome maintenance and survival. Loss of ASS1 contributes to DNA damage and promotes cell cycle progression, likely contributing to cancer mutagenesis and, hence, adaptability potential.

12.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045418

RESUMO

The analysis of cell-free tumor DNA (ctDNA) and proteins in the blood of cancer patients potentiates a new generation of non-invasive diagnostics and treatment monitoring approaches. However, confident detection of these tumor-originating markers is challenging, especially in the context of brain tumors, in which extremely low amounts of these analytes circulate in the patient's plasma. Here, we applied a sensitive single-molecule technology to profile multiple histone modifications on millions of individual nucleosomes from the plasma of Diffuse Midline Glioma (DMG) patients. The system reveals epigenetic patterns that are unique to DMG, significantly differentiating this group of patients from healthy subjects or individuals diagnosed with other cancer types. We further develop a method to directly capture and quantify the tumor-originating oncoproteins, H3-K27M and mutant p53, from the plasma of children diagnosed with DMG. This single-molecule system allows for accurate molecular classification of patients, utilizing less than 1ml of liquid-biopsy material. Furthermore, we show that our simple and rapid detection strategy correlates with MRI measurements and droplet-digital PCR (ddPCR) measurements of ctDNA, highlighting the utility of this approach for non-invasive treatment monitoring of DMG patients. This work underscores the clinical potential of single-molecule-based, multi-parametric assays for DMG diagnosis and treatment monitoring.

13.
Nat Biotechnol ; 41(2): 212-221, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36076083

RESUMO

The analysis of cell-free DNA (cfDNA) in plasma provides information on pathological processes in the body. Blood cfDNA is in the form of nucleosomes, which maintain their tissue- and cancer-specific epigenetic state. We developed a single-molecule multiparametric assay to comprehensively profile the epigenetics of plasma-isolated nucleosomes (EPINUC), DNA methylation and cancer-specific protein biomarkers. Our system allows for high-resolution detection of six active and repressive histone modifications and their ratios and combinatorial patterns on millions of individual nucleosomes by single-molecule imaging. In addition, our system provides sensitive and quantitative data on plasma proteins, including detection of non-secreted tumor-specific proteins, such as mutant p53. EPINUC analysis of a cohort of 63 colorectal cancer, 10 pancreatic cancer and 33 healthy plasma samples detected cancer with high accuracy and sensitivity, even at early stages. Finally, combining EPINUC with direct single-molecule DNA sequencing revealed the tissue of origin of colorectal, pancreatic, lung and breast tumors. EPINUC provides multilayered information of potential clinical relevance from limited (<1 ml) liquid biopsy material.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Nucleossomos , Humanos , Biomarcadores Tumorais , Ácidos Nucleicos Livres/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Proteínas de Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Imagem Individual de Molécula
14.
Methods ; 54(3): 326-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21439383

RESUMO

Histone H2B ubiquitylation was shown to be associated with actively transcribed genes in mammalian cells and has been suggested to be involved in transcriptional regulation. Despite the limited applicability of genetic tools to analyze H2B ubiquitylation in mammals, several biochemical and immunological approaches have been successfully implemented to study this modification. Here we describe several techniques to detect ubiquitylated H2B in mammalian cells and to dissect its genomic localization.


Assuntos
Histonas/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Ubiquitinadas/isolamento & purificação , Métodos Analíticos de Preparação de Amostras , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Western Blotting , Extratos Celulares/química , Fusão Celular , Núcleo Celular/química , Células Cultivadas , Cromatina/química , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Feminino , Histonas/química , Histonas/metabolismo , Hibridomas , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Ubiquitinadas/química , Proteínas Ubiquitinadas/metabolismo
15.
Curr Opin Genet Dev ; 73: 101899, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091256

RESUMO

Genome regulation is governed by the dynamics of chromatin modifications. The extensive and diverse array of DNA and histone modifications allow multiple elements to act combinatorically and direct tissue-specific and cell-specific outcomes. Yet, our ability to elucidate these complex combinations and link them to normal genome regulation, as well as understand their deregulation in cancer, has been hindered by the lack of suitable technologies. Here, we describe recent findings indicating the importance of the combinatorial epigenome, and novel methodologies to measure and characterize these combinations. These complementary methods span multiple disciplines, providing a means to decode epigenetic combinations and link them to biological outcomes. Finally, we discuss the promise of harnessing the rich combinatorial epigenetic information to improve cancer diagnostics and monitoring.


Assuntos
Epigenoma , Neoplasias , Cromatina/genética , Metilação de DNA/genética , Epigênese Genética/genética , Epigenoma/genética , Epigenômica , Genoma , Código das Histonas/genética , Neoplasias/diagnóstico , Neoplasias/genética
16.
Cell Rep ; 39(7): 110836, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584667

RESUMO

Cancer-associated mutations in genes encoding histones dramatically reshape chromatin and support tumorigenesis. Lysine to methionine substitution of residue 27 on histone H3 (K27M) is a driver mutation in high-grade pediatric gliomas, known to abrogate polycomb repressive complex 2 (PRC2) activity. We applied single-molecule systems to image individual nucleosomes and delineate the combinatorial epigenetic patterns associated with H3-K27M expression. We found that chromatin marks on H3-K27M-mutant nucleosomes are dictated both by their incorporation preferences and by intrinsic properties of the mutation. Mutant nucleosomes not only preferentially bind PRC2 but also directly interact with MLL1, leading to genome-wide redistribution of H3K4me3. H3-K27M-mediated deregulation of repressive and active chromatin marks leads to unbalanced "bivalent" chromatin, which may support a poorly differentiated cellular state. This study provides evidence for a direct effect of H3-K27M oncohistone on the MLL1-H3K4me3 pathway and highlights the capability of single-molecule tools to reveal mechanisms of chromatin deregulation in cancer.


Assuntos
Neoplasias Encefálicas , Glioma , Histona-Lisina N-Metiltransferase , Proteína de Leucina Linfoide-Mieloide , Nucleossomos , Neoplasias Encefálicas/genética , Criança , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Glioma/genética , Glioma/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Mutação , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
17.
Nat Commun ; 13(1): 7199, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443319

RESUMO

Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity. Such plasticity, including transition from luminal to basal-like cell identity, can promote disease aggressiveness. We now report that the tumor suppressor LATS1, whose expression is often downregulated in human breast cancer, helps maintain luminal breast cancer cell identity by reducing the chromatin accessibility of genes that are characteristic of a "basal-like" state, preventing their spurious activation. This is achieved via interaction of LATS1 with the NCOR1 nuclear corepressor and recruitment of HDAC1, driving histone H3K27 deacetylation near NCOR1-repressed "basal-like" genes. Consequently, decreased expression of LATS1 elevates the expression of such genes and facilitates slippage towards a more basal-like phenotypic identity. We propose that by enforcing rigorous silencing of repressed genes, the LATS1-NCOR1 axis maintains luminal cell identity and restricts breast cancer progression.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Genes Reguladores , Proteínas Serina-Treonina Quinases/genética , Mama , Repressão Psicológica , Correpressor 1 de Receptor Nuclear/genética
18.
EMBO Rep ; 10(8): 894-900, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19575011

RESUMO

Post-translational histone modifications have essential roles in controlling nuclear processes; however, the specific mechanisms regulating these modifications and their combinatorial activities remain elusive. Cyclin-dependent kinase 9 (CDK9) regulates gene expression by phosphorylating transcriptional regulatory proteins, including the RNA polymerase II carboxy-terminal domain. Here, we show that CDK9 activity is essential for maintaining global and gene-associated levels of histone H2B monoubiquitination (H2Bub1). Furthermore, CDK9 activity and H2Bub1 help to maintain correct replication-dependent histone messenger RNA (mRNA) 3'-end processing. CDK9 knockdown consistently resulted in inefficient recognition of the correct mRNA 3'-end cleavage site and led to increased read-through of RNA polymerase II to an alternative downstream polyadenylation signal. Thus, CDK9 acts to integrate phosphorylation during transcription with chromatin modifications to control co-transcriptional histone mRNA processing.


Assuntos
Quinase 9 Dependente de Ciclina/fisiologia , Histonas/metabolismo , RNA Mensageiro/metabolismo , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Dactinomicina/farmacologia , Diclororribofuranosilbenzimidazol/farmacologia , Flavonoides/farmacologia , Humanos , Camundongos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Piperidinas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação/genética
19.
Nat Med ; 27(2): 212-224, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33574607

RESUMO

Most (if not all) tumors emerge and progress under a strong evolutionary pressure imposed by trophic, metabolic, immunological, and therapeutic factors. The relative impact of these factors on tumor evolution changes over space and time, ultimately favoring the establishment of a neoplastic microenvironment that exhibits considerable genetic, phenotypic, and behavioral heterogeneity in all its components. Here, we discuss the main sources of intratumoral heterogeneity and its impact on the natural history of the disease, including sensitivity to treatment, as we delineate potential strategies to target such a detrimental feature of aggressive malignancies.


Assuntos
Heterogeneidade Genética , Fatores Imunológicos/genética , Neoplasias/genética , Microambiente Tumoral/genética , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/imunologia
20.
Cell Rep Methods ; 1(5)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34734208

RESUMO

Epigenetic modifications control the stability and translation of mRNA molecules. Here, we present a microscopy-based platform for quantifying modified RNA molecules and for relating the modification patterns to single-cell phenotypes. We directly capture mRNAs from cell lysates on oligo-dT-coated coverslips, then visually detect and sequence individual m6A-immunolabled transcripts without amplification. Integration of a nanoscale device enabled us to isolate single cells on the platform, and thereby relate single-cell m6A modification states to gene expression signatures and cell surface markers. Application of the platform to MUTZ3 leukemia cells revealed a marked reduction in cellular m6A levels as CD34+ leukemic progenitors differentiate to CD14+ myeloid cells. We then coupled single-molecule m6A detection with fluorescence in situ hybridization (FISH) to relate mRNA and m6A levels of individual genes to single-cell phenotypes. This single-cell multi-modal assay suite can empower investigations of RNA modifications in rare populations and single cells.


Assuntos
Hibridização in Situ Fluorescente , RNA Mensageiro/genética , Antígenos CD34
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA