Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 51(11): 6202-6210, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28488850

RESUMO

Two kinds of isocyanate were used to modify graphene oxide (GO) samples. Then, polyimide (PI) hybrid membranes containing GO and modified GO were prepared by in situ polymerization. The permeation of CO2 and N2 was studied using these novel membranes. The morphology experiments showed that the isocyanate groups were successfully grafted on the surface of GO by replacement of the oxygen-containing functional groups. After modification, the surface polarity of the GO increased, and more defect structures were introduced into the GO surface. This resulted in a good distribution of more modified GO samples in the PI polymer matrix. Thus, the PI hybrid membranes incorporated by modified GO samples showed a high gas permeability and ideal selectivity of membranes. In addition, enhancement of the selectivity due to the solubility of CO2 played a major role in the increase in the separation performance of the hybrid membranes for CO2, although the diffusion coefficients for CO2 also increased. Both the higher condensability and the strong affinity between CO2 molecules and GO in the polymer matrix caused an enhancement of the solubility selectivity higher than the diffusion selectivity after GO surface modification.


Assuntos
Dióxido de Carbono , Grafite , Membranas Artificiais , Óxidos , Polimerização , Polímeros
2.
Environ Sci Technol ; 49(13): 8004-11, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26024066

RESUMO

Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO.


Assuntos
Dióxido de Carbono/isolamento & purificação , Fracionamento Químico/instrumentação , Grafite/química , Membranas Artificiais , Nitrogênio/isolamento & purificação , Fracionamento Químico/métodos , Desenho de Equipamento , Oxirredução , Óxidos/química , Permeabilidade , Polimerização , Poliuretanos/química
3.
Int J Mol Sci ; 14(2): 3621-38, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23434661

RESUMO

The miscibility of carboxymethyl chitosan/polyethylenimine (CMCS/PEI) blends was analyzed by FT-IR, TGA and SEM. Defect-free CMCS/PEI blend membranes were prepared with polysulfone (PSf) ultrafiltration membranes as support layer for the separation of CO(2)/N(2) mixtures. The results demonstrate that the CMCS/PEI blend is miscible, due to the hydrogen bonding interaction between the two targeted polymers. For the blended membrane without water, the permeability of CO(2) gas is 3.6 × 10-7 cm3 cm-2 s-1 cmHg-1 and the corresponding separation factor for CO(2) and N(2) gas is about 33 at the pressure of 15.2 cmHg. Meanwhile, the blended membrane with water has the better permselectivity. The blended membrane containing water with PEI content of 30 wt% has the permeance of 6.3 × 10-4 cm3 cm-2 s-1 cmHg-1 for CO(2) gas and a separation factor of 325 for CO(2)/N(2) mixtures at the same feed pressure. This indicates that the CO(2) separation performance of the CMCS/PEI blend membrane is higher than that of other facilitated transport membranes reported for CO(2)/N(2) mixture separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA