Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2319429121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513095

RESUMO

Polyamines are a class of small polycationic alkylamines that play essential roles in both normal and cancer cell growth. Polyamine metabolism is frequently dysregulated and considered a therapeutic target in cancer. However, targeting polyamine metabolism as monotherapy often exhibits limited efficacy, and the underlying mechanisms are incompletely understood. Here we report that activation of polyamine catabolism promotes glutamine metabolism, leading to a targetable vulnerability in lung cancer. Genetic and pharmacological activation of spermidine/spermine N1-acetyltransferase 1 (SAT1), the rate-limiting enzyme of polyamine catabolism, enhances the conversion of glutamine to glutamate and subsequent glutathione (GSH) synthesis. This metabolic rewiring ameliorates oxidative stress to support lung cancer cell proliferation and survival. Simultaneous glutamine limitation and SAT1 activation result in ROS accumulation, growth inhibition, and cell death. Importantly, pharmacological inhibition of either one of glutamine transport, glutaminase, or GSH biosynthesis in combination with activation of polyamine catabolism synergistically suppresses lung cancer cell growth and xenograft tumor formation. Together, this study unveils a previously unappreciated functional interconnection between polyamine catabolism and glutamine metabolism and establishes cotargeting strategies as potential therapeutics in lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Glutamina , Poliaminas/metabolismo , Pulmão/metabolismo , Morte Celular , Acetiltransferases/genética , Acetiltransferases/metabolismo , Espermina/metabolismo
2.
Anal Chem ; 96(24): 9975-9983, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38830231

RESUMO

The emergence of lipid droplets (LDs) has been recognized as cellular markers of ocular surface hyperosmosis, which is recognized as a fundamental mechanism driving dry eye disease (DED), while their dynamics during DED progression and therapy remains unlocked. For this purpose, an LD-specific fluorescent probe P1 is presented in this work that exhibits highly selective and sensitive emission enhancement in response to a decreased ambient polarity (Δf) from 0.209 to 0.021. The hydrophobic nature of P1 enables specific staining of LDs, facilitating visualization of changes in polarity within these cellular structures. Utilizing P1, we observe a decrease in polarity accompanied by an increase in the size and number of LDs in hyperosmotic human corneal epithelial cells (HCECs). Furthermore, interplays between LDs and cellular organelles such as mitochondria and the Golgi apparatus are visualized, suggesting the underlying pathogenesis in DED. Notably, the variations of LDs are observed after the inhibition of ferroptosis or activation of autophagy in hyperosmotic HCECs, implying the great potential of LDs as indicators for the design and efficacy evaluation of DED drugs regarding ferroptosis or autophagy as targets. Finally, LDs are confirmed to be overproduced in corneal tissues from DED mice, and the application of clinical eye drops effectively impedes these changes. This detailed exploration underscores the significant roles of LDs as an indicator for the deep insight into DED advancement and therapy.


Assuntos
Síndromes do Olho Seco , Corantes Fluorescentes , Gotículas Lipídicas , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/química , Humanos , Animais , Camundongos , Corantes Fluorescentes/química , Autofagia , Fluorescência
3.
Small ; : e2403300, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966902

RESUMO

Pore size sieving, Donnan exclusion, and their combined effects seriously affect ion separation of membrane processes. However, traditional polymer-based membranes face some challenges in precisely controlling both charge distribution and pore size on the membrane surface, which hinders the ion separation performance, such as heavy metal ion removal. Herein, the heterocharged covalent organic framework (COF) membrane is reported by assembling two kinds of ionic COF nanosheets with opposite charges and different pore sizes. By manipulating the stacking quantity and sequence of two kinds of nanosheets, the impact of membrane surface charge and pore size on the separation performance of monovalent and multivalent ions is investigated. For the separation of anions, the effect of pore size sieving is dominant, while for the separation of cations, the effect of Donnan exclusion is dominant. The heterocharged TpEBr/TpPa-SO3H membrane with a positively charged upper layer and a negatively charged bottom layer exhibits excellent rejection of multivalent anions and cations (Ni2+, Cd2+, Cr2+, CrO4 2-, SeO3 2-, etc). The strategy provides not only high-performance COF membranes for ion separation but also an inspiration for the engineering of heterocharged membranes.

4.
Bioorg Chem ; 143: 107021, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104499

RESUMO

The diagnosis and treatment of breast cancer is of immense importance in improving patient outcomes. The biological marker NAD(P)H:quinone oxidoreductase 1 was utilized to design BrCyS-Q, a near-infrared activatable photosensitizer for breast cancer. BrCyS-Q was successfully employed to diagnose breast cancer cells using fluorescence and photodynamic inhibition. The findings of this research may offer novel insights for the diagnosis and treatment of clinical breast cancer via photodynamic therapy.


Assuntos
Neoplasias da Mama , Fotoquimioterapia , Humanos , Feminino , Fármacos Fotossensibilizantes/farmacologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Quinonas , Fluorescência
5.
Angew Chem Int Ed Engl ; 62(43): e202310158, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37668526

RESUMO

Despite metal-based photosensitizers showing great potential in photodynamic therapy for tumor treatment, the application of the photosensitizers is intrinsically limited by their poor cancer-targeting properties. Herein, we reported a metal-based photosensitizer-bacteria hybrid, Ir-HEcN, via covalent labeling of an iridium(III) photosensitizer to the surface of genetically engineered bacteria. Due to its intrinsic self-propelled motility and hypoxia tropism, Ir-HEcN selectively targets and penetrates deeply into tumor tissues. Importantly, Ir-HEcN is capable of inducing pyroptosis and immunogenic cell death of tumor cells under irradiation, thereby remarkably evoking anti-tumor innate and adaptive immune responses in vivo and leading to the regression of solid tumors via combinational photodynamic therapy and immunotherapy. To the best of our knowledge, Ir-HEcN is the first metal complex decorated bacteria for enhanced photodynamic immunotherapy.

6.
Angew Chem Int Ed Engl ; 62(44): e202312170, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37710398

RESUMO

Regulating autophagy to control the homeostatic recycling process of cancer cells is a promising anticancer strategy. Golgi apparatus is a substrate of autophagy but the Golgi-autophagy (Golgiphagy) mediated antitumor pathway is rarely reported. Herein, we have developed a novel Golgi-targeted platinum (II) complex Pt3, which is ca. 20 times more cytotoxic to lung carcinoma than cisplatin and can completely eliminate tumors after intratumoral administration in vivo. Its nano-encapsulated system for tail vein administration also features a good anti-tumor effect. Mechanism studies indicate that Pt3 induces substantial Golgi stress, indicated by the fragmentation of Golgi structure, down-regulation of Golgi proteins (GM130, GRASP65/55), loss of Golgi-dependent transport and glycosylation. This triggers Golgiphagy but blocks the subsequent fusion of autophagosomes with lysosomes, that is a dual role in autophagy regulation, resulting in loss of proteostasis and apoptotic cell death. As far as we know, Pt3 is the first Golgi-targeted Pt complex that can trigger Golgi stress-mediated dual-regulation of autophagic flux and autophagy-apoptosis crosstalk for highly efficient cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Platina/farmacologia , Autofagia , Complexo de Golgi/metabolismo , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Neoplasias/metabolismo
7.
Anal Chem ; 94(32): 11159-11167, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35916489

RESUMO

Pancreatic cancer (PC) is one of the most lethal cancers worldwide, which is usually diagnosed in the advanced stage and is highly resistant to traditional chemotherapy, radiotherapy, and immunotherapy. Therefore, there is an urgent need for developing new PC-specific imaging and treatment. In this study, an quinone oxidoreductase 1 (NQO-1)-activated near-infrared (NIR) agent, ICy-Q, was synthesized. ICy-Q is almost nonemissive, while its NIR emission at 705 nm is triggered by NQO-1-induced reduction in the PC cells. In addition, the reduction product, ICy-OH, is specifically enriched in mitochondria and lysosomes and acts as an effective chemotherapeutic agent to selectively induce pancreatic cancer cell death via the cell pyroptosis pathway. Further studies have shown that ICy-Q is suitable for ex vivo imaging of clinical PC sections and solid tumors from patients. We expect this study will be helpful in the future for the design of targeted theranostic agents for PC.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Medicina de Precisão , Nanomedicina Teranóstica/métodos , Neoplasias Pancreáticas
8.
Small ; 18(11): e2104951, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060337

RESUMO

Nanoparticle corona phases, especially those surrounding anisotropic particles, are central to determining their catalytic, molecular recognition, and interfacial properties. It remains a longstanding challenge to chemically synthesize and control such phases at the nanoparticle surface. In this work, the supramolecular chemistry of rosette nanotubes (RNTs), well-defined hierarchically self-assembled nanostructures formed from heteroaromatic bicyclic bases, is used to create molecularly precise and continuous corona phases on single-walled carbon nanotubes (SWCNTs). These RNT-SWCNT (RS) complexes exhibit the lowest solvent-exposed surface area (147.8 ± 60 m-1 ) measured to date due to its regular structure. Through Raman spectroscopy, molecular-scale control of the free volume is also observed between the two annular structures and the effects of confined water. SWCNT photoluminescence (PL) within the RNT is also modulated considerably as a function of their diameter and chirality, especially for the (11, 1) species, where a PL increase compared to other species can be attributed to their chiral angle and the RNT's inward facing electron densities. In summary, RNT chemistry is extended to the problem of chemically defining both the exterior and interior corona interfaces of an encapsulated particle, thereby opening the door to precision control of core-shell nanoparticle interfaces.


Assuntos
Nanopartículas , Nanoestruturas , Nanotubos de Carbono , Nanotubos de Carbono/química , Solventes , Água/química
9.
Inorg Chem ; 61(24): 9328-9338, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35666261

RESUMO

Two-dimensional (2D) metal-organic framework (MOF) nanosheets have been demonstrated to be promising templates for the growth of various kinds of nanomaterials on their surfaces to construct novel 2D composites, thus realizing enhanced performance in various applications. Herein, we report the growth of Cu2O nanoparticles on 2D Zr-ferrocene (Zr-Fc)-MOF (Zr-Fc-MOF) nanosheets to prepare 2D composites for near-infrared (NIR) photothermally enhanced chemodynamic antibacterial therapy. The uniform Zr-Fc-MOF nanosheets are synthesized using the solvothermal method, followed by ultrasound sonication, and Cu2O nanoparticles are then deposited on its surface to obtain the Cu2O-decorated Zr-Fc-MOF (denoted as Cu2O/Zr-Fc-MOF) 2D composite. Promisingly, the Cu2O/Zr-Fc-MOF composite shows higher chemodynamic activity for producing ·OH via Fenton-like reaction than that of the pristine Zr-Fc-MOF nanosheets. More importantly, the chemodynamic activity of the Cu2O/Zr-Fc-MOF composite can be further enhanced by the photothermal effect though NIR laser (808 nm) irradiation. Thus, the Cu2O/Zr-Fc-MOF composite can be used as an efficient nanoagent for photothermally enhanced chemodynamic antibacterial therapy.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Nanoestruturas , Antibacterianos/farmacologia , Estruturas Metalorgânicas/farmacologia , Metalocenos/farmacologia
10.
J Nanobiotechnology ; 20(1): 136, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292034

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets (e.g., MoS2) with metallic phase (1T or 1T´ phase) have been proven to exhibit superior performances in various applications as compared to their semiconducting 2H-phase counterparts. However, it remains unclear how the crystal phase of 2D TMD nanosheets affects their sonodynamic property. In this work, we report the preparation of MoS2 nanosheets with different phases (metallic 1T/1T´ or semiconducting 2H) and exploration of its crystal-phase effect on photothermal-enhanced sonodynamic antibacterial therapy. Interestingly, the defective 2D MoS2 nanosheets with high-percentage metallic 1T/1T´ phase (denoted as M-MoS2) present much higher activity towards the ultrasound-induced generation of reactive oxygen species (ROS) as compared to the semiconducting 2H-phase MoS2 nanosheets. More interestingly, owing to its metallic phase-enabled strong absorption in the near-infrared-II (NIR-II) regime, the ultrasound-induced ROS generation performance of the M-MoS2 nanosheets can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after modifying with polyvinylpyrrolidone, the M-MoS2 nanosheets can be used as an efficient sonosensitizer for photothermal-enhanced sonodynamic bacterial elimination under ultrasound treatment combining with NIR-II laser irradiation. This study demonstrates that metallic MoS2 nanosheets can be used as a promising sonosensitizer for antibacterial therapy, which might be also promising for cancer therapies.


Assuntos
Antibacterianos , Molibdênio , Antibacterianos/farmacologia , Bactérias , Molibdênio/química , Molibdênio/farmacologia , Povidona
11.
Molecules ; 27(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565979

RESUMO

As hypoxia is closely associated with tumor progression, proliferation, invasion, metastasis, and strong resistance to therapy, regulating and overcoming the hypoxia tumor microenvironment are two increasingly important aspects of tumor treatment. Herein, we report a phototherapeutic platform that uses the organic photosensitizer diketopyrrolopyrrole (DPP) derivative and inorganic iridium salts (IrCl3) with photothermal activity and the capacity to decompose H2O2 efficiently. The characterization of their photophysical properties proved that DPP-Ir nanoparticles are capable of remarkable near-infrared (NIR) absorption, and compared to DPP nanoparticles, the photothermal conversion efficiency (PCE) increases from 42.1% in DPP nanoparticles to 67.0% in DPP-Ir nanoparticles. The hybrid nanoparticles utilize the catalytic decomposition of endogenous H2O2 to produce oxygen for the downregulation of the hypoxia-inducible factor 1 subunit alpha (HIF-1α) protein, which could reverse the tumor hypoxic microenvironment. Benefiting from the excellent optical properties and good biocompatibility, the hybrid platform exhibits efficient photothermal therapeutic effects as well as good biological safety. In conclusion, such a hybrid platform could improve photothermal therapy against cancer.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio , Hipóxia , Irídio , Neoplasias/terapia , Microambiente Tumoral
12.
Inorg Chem ; 60(8): 5563-5572, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33667336

RESUMO

Zinc/Zn(II) is an essential trace element for humans and acts as an important substance that maintains the normal growth, development, and metabolism of the body. Excess or deficient Zn(II) can cause abnormal metabolism in the human body, leading to a series of diseases. Moreover, biosystems have complex homeostasis systems, especially harsh pH (OH-) environments. Thus, investigating the variation in the levels of Zn(II) and OH- is extremely important in clinical, medical, and environmental testing. Nevertheless, the lack of practical and convenient fluorescence imaging tools limits the tracing of Zn(II) and OH- in biosystems. In this work, a well-designed dual-channel fluorescent signal response chemosensor (DACH-fhba) was assembled for selective sensing of Zn(II) and OH- in the biosystem using a fluorescence turn-on strategy. On encountering Zn(II), the chemosensor emitted a blue fluorescence signal (455 nm). Meanwhile, the bright green fluorescence signal (530 nm) increased with OH- addition simultaneously. With the blue/green dual fluorescence response of DACH-fhba, the sensor exhibited high stability and reversibility. Notably, the bioimaging revealed that DACH-fhba successfully tracked Zn(II) and OH- in live cells, larval zebrafish, and plants. Further results implied that DACH-fhba can be used to achieve visual detection of Zn(II) and OH- in organisms. Altogether, this work is conducive to the monitoring of Zn(II) and OH- in organisms and promotes the understanding of the function of Zn(II) and OH- in biosystems.


Assuntos
Técnicas Biossensoriais , Complexos de Coordenação/análise , Corantes Fluorescentes/química , Hidróxidos/análise , Imagem Óptica , Zinco/análise , Animais , Corantes Fluorescentes/síntese química , Concentração de Íons de Hidrogênio , Camundongos , Estrutura Molecular , Células RAW 264.7 , Peixe-Zebra
13.
Macromol Rapid Commun ; 42(9): e2100001, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33544922

RESUMO

Herein, spindle-shaped block copolymer (BCP) nanoparticles are used in seeded polymerization of methyl methacrylate as a novel approach to generating cylindrical nanostructures. The chain-extension of BCP seeds by an amorphous coil-type polymer within the seed core composed of semifluorinated liquid-crystalline blocks triggers the deforming, stretching, and directional growth of the seeds along the long axis, eventually leads to nanorods.


Assuntos
Nanopartículas , Nanoestruturas , Micelas , Polimerização , Polímeros
14.
Bioorg Chem ; 109: 104746, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33639363

RESUMO

Aluminum (Al), gallium (Ga), indium (In) are three essential elements in group IIIA of the periodic table, which all share similar chemical properties and are also vital in many aspects of bio- and environmental systems. Proper control of their levels is thus necessary as overexposure to them has been linked to onsets of many diseases. Fluorescence based molecular probes have always been the driving horse for detecting vital ions including group IIIA ions. However, only a few such probes have been reported so far and all of them are faced with one or more shortcomings such as not very high sensitivity, incapability to detect multiple ions simultaneously, and poor cell penetration abilities due to emitted fluorescence at shorter wavelengths. To meet those challenges, we herein presented the successful development and application of a novel group IIIA ions fluorescent probe, NBD-hnap, in live RAW264.7 cell and zebrafish models, especially the imaging of ocular tumor cell OCM-1 (human choroid melanoma cells). NBD-hnap was synthesized by a simple conjugation of NBD and hnap molecules under suitable conditions. Subsequent experimental analysis and theoretical calculations confirmed that NBD-hnap forms a 1:1 chelate with each of three selected group IIIA ions. Further evaluation proved that NBD-hnap can realize highly sensitive [LODs of 113, 82 and 150 nM for Al(III), Ga(III), and In(III) respectively in aqueous solutions] and highly selective (over a dozen of interfering cations) through an ESIPT-based fluorescent sensing mechanism with strong far-red emission around 640 nm. Those value merits make NBD-hnap superior to other group IIIA ion probes reported before and NBD-hnap is thus expected to find wider and greater applications in the near future.


Assuntos
Corantes Fluorescentes/química , Metais Leves/análise , Prótons , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Corantes Fluorescentes/síntese química , Humanos , Íons/análise , Camundongos , Estrutura Molecular , Células RAW 264.7 , Relação Estrutura-Atividade , Peixe-Zebra
15.
J Nanobiotechnology ; 19(1): 375, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34794446

RESUMO

BACKGROUND: Mild-temperature photothermal therapy (mild-PTT) has emerged as a highly promising antitumor strategy by triggering immunogenic cell death (ICD) to elicit both innate and adaptive immune responses for tumor control. However, mild-PTT still leads to the risk of tumor recurrence or metastasis because it could hardly completely eradicate tumors due to its impaired immunological efficacy owing to the enhanced PD-L1 expression in tumor cells after treatment. RESULTS: In this study, we described a hydrogen peroxide (H2O2) responsive manganese dioxide mineralized albumin nanocomposite loading with mitochondria function inhibitor phenformin (PM) and near-infrared photothermal dye indocyanine green (ICG) by modified two-step biomineralization method. In combination with ICG induced mild-PTT and PM mediated mitochondria dysfunction, PD-L1 expression was obviously down-regulated and the generated immunological responses was able to effectively attack the remaining tumor cells. Meanwhile, the risk of tumor metastasis was effectively inhibited by reducing the expression of tumor invasion-related signal molecules (TGF-ß and vimentin) after combining treatment. CONCLUSION: Such a strategy offers novel insight into the development of nanomedicine for mild-PTT as well as cancer immunotherapy, which can provide protection against tumor relapse post elimination of their initial and metastatic tumors.


Assuntos
Antígeno B7-H1 , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Fenformin , Terapia Fototérmica , Albuminas/química , Animais , Antineoplásicos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomineralização/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Peróxido de Hidrogênio , Verde de Indocianina , Compostos de Manganês , Camundongos , Óxidos , Fenformin/química , Fenformin/farmacologia
16.
J Nanobiotechnology ; 19(1): 13, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413427

RESUMO

BACKGROUND: To date, triple-negative breast cancer (TNBC) treatment options are limited because of the loss of target receptors and, as a result, are only managed with chemotherapy. What is worse is that TNBC is frequently developing resistance to chemotherapy. By using small interfering RNA (siRNA)-based therapeutics, our recent work demonstrated X-box-binding protein 1 (XBP1) was linked to human epidermal growth factor receptor 2 positive (HER2+) breast cancer development and chemoresistance. Given the instability, off-target effects, net negative charge, and hydrophobicity of siRNA in vivo utilization and clinical transformation, its use in treatment is hampered. Thus, the development of a siRNA-based drug delivery system (DDS) with ultra-stability and specificity is necessary to address the predicament of siRNA delivery. RESULTS: Here, we assembled RNase resistant RNA nanoparticles (NPs) based on the 3WJ structure from Phi29 DNA packaging motor. To improved targeted therapy and sensitize TNBC to chemotherapy, the RNA NPs were equipped with an epidermal growth factor receptor (EGFR) targeting aptamer and XBP1 siRNA. We found our RNA NPs could deplete XBP1 expression and suppress tumor growth after intravenous administration. Meanwhile, RNA NPs treatment could promote sensitization to chemotherapy and impede angiogenesis in vivo. CONCLUSIONS: The results further demonstrate that our RNA NPs could serve as an effective and promising platform not only for siRNA delivery but also for chemotherapy-resistant TNBC therapy.


Assuntos
Bacteriófagos/genética , Sistemas de Liberação de Medicamentos/métodos , RNA Interferente Pequeno/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Receptores ErbB/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Am Chem Soc ; 142(31): 13450-13458, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32649828

RESUMO

Covalent organic frameworks (COFs) with intrinsic, tunable, and uniform pores are potent building blocks for separation membranes, yet poor processing ability and long processing time remain grand challenges. Herein, we report an engineered solid-vapor interface to fabricate a highly crystalline two-dimensional COF membrane with a thickness of 120 nm in 9 h, which is 8 times faster than that in the reported literature. Due to the ultrathin nature and ordered pores, the membrane exhibited an ultrahigh permeance (water, ∼411 L m-2 h-1 bar-1 and acetonitrile, ∼583 L m-2 h-1 bar-1) and excellent rejection of dye molecules larger than 1.4 nm (>98%). The membrane exhibited long-term operation which confirmed its outstanding stability. Our solid-vapor interfacial polymerization method may evolve into a generic platform to fabricate COFs and other organic framework membranes.

18.
Hepatology ; 70(1): 389-402, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30864232

RESUMO

Bile acids (BAs) are diverse molecules that are synthesized from cholesterol in the liver. The synthesis of BAs has traditionally been shown to occur through two pathways. Cholesterol 7α-hydroxylase (CYP7A1) performs the initial and rate-limiting step in the classical pathway, and sterol 27-hydroxylase (CYP27A1) initiates the hydroxylation of cholesterol in the alternative pathway. While the role of individual BA species as physiological detergents is relatively ubiquitous, their endocrine functions as signaling molecules and roles in disease pathogenesis have been emerging to be BA species-specific. In order to better understand the pharmacologic and toxicologic roles of individual BA species in an in vivo model, we created cholesterol 7α-hydroxylase (Cyp7a1) and sterol 27-hydroxylase (Cyp27a1) double knockout (DKO) mice by cross-breeding single knockout mice (Cyp7a1-/- and Cyp27a1-/- ). BA profiling and quantification by liquid chromatography-mass spectrometry of serum, gallbladder, liver, small intestine, and colon of wild-type, Cyp7a1-/- , Cyp27a1-/- , and DKO mice showed that DKO mice exhibited a reduction of BAs in the plasma (45.9%), liver (60.2%), gallbladder (76.3%), small intestine (88.7%), and colon (93.6%), while maintaining a similar BA pool composition compared to wild-type mice. The function of the farnesoid X receptor (FXR) in DKO mice was lower, revealed by decreased mRNA expression of well-known FXR target genes, hepatic small heterodimer partner, and ileal fibroblast growth factor 15. However, response to FXR synthetic ligands was maintained in DKO mice as treatment with GW4064 resulted in similar changes in gene expression in all strains of mice. Conclusion: We provide a useful tool for studying the role of individual BAs in vivo; DKO mice have a significantly reduced BA pool, have a similar BA profile, and maintained response to FXR activation.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colestanotriol 26-Mono-Oxigenase/deficiência , Colesterol 7-alfa-Hidroxilase/deficiência , Modelos Animais , Animais , Colestanotriol 26-Mono-Oxigenase/genética , Colesterol 7-alfa-Hidroxilase/genética , Homeostase , Masculino , Camundongos Knockout
19.
Mol Pharm ; 17(4): 1415-1427, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32159961

RESUMO

The therapeutic efficacy of chemotherapy in many types of hematological malignancies and solid tumors is dramatically hindered by multidrug resistance (MDR). This work presents a combination strategy of pretreatment of MDA-MB-231/MDR1 cells with quercetin (QU) followed by doxorubicin (DOX) to overcome MDR, which can be delivered by mixed micelles composed of the reduction-sensitive hyaluronic acid-based conjugate and d-α-tocopheryl poly(ethylene glycol) 1000 succinate. The combination strategy can enhance the cytotoxicity of DOX on MDA-MB-231/MDR1 cells by increasing intracellular DOX accumulation and facilitating DOX-induced apoptosis. The probable MDR reversal mechanisms are that the pretreatment cells with QU-loaded mixed micelles downregulate P-glycoprotein expression to decrease DOX efflux as well as initiate mitochondria-dependent apoptotic pathways to accelerate DOX-induced apoptosis. In addition, this combination strategy can not only potentiate in vivo tumor-targeting efficiency but also enhance the antitumor effect in MDA-MB-231/MDR1-bearing nude mice without toxicity or side effects. This research suggests that the co-administration of natural compounds and chemotherapeutic drugs could be an effective strategy to overcome tumor MDR, which deserves further exploration.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Ácido Hialurônico/química , Polietilenoglicóis/química , Quercetina/farmacologia , Vitamina E/química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Mama/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Nus , Micelas , Transdução de Sinais/efeitos dos fármacos
20.
Analyst ; 145(12): 4239-4244, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32436498

RESUMO

The aim of this study was to overcome the reported shortcomings of the glutathione (GSH) detection of rhodamine-based fluorescent probes, such as poor selectivity to thiol groups and reversible unstable covalent binding with the thiol groups. Here, we have developed a simple and specific fluorescent probe based on rhodamine B, which can be used to selectively detect GSH in solution and perform bioimaging in living cells. This design strategy uses a specific reaction between allenamide and the GSH thiol group, which proceeds rapidly in a phosphate buffer/tetrahydrofuran (PBS/THF) mixture with specific selectivity, and forms a stable and irreversible conjugate. The combined simplicity and specificity of the recognition process enables it to serve as a fluorescent probe for detecting GSH level changes in living cells. Such a new recognizing strategy thus may open a new window for its further application in detecting GSH levels both in vitro and in vivo.


Assuntos
Corantes Fluorescentes/química , Glutationa/análise , Rodaminas/química , Glutationa/metabolismo , Humanos , Limite de Detecção , Células MCF-7 , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA