RESUMO
MOTIVATION: Elucidating functionally similar orthologous regulatory regions for human and model organism genomes is critical for exploiting model organism research and advancing our understanding of results from genome-wide association studies (GWAS). Sequence conservation is the de facto approach for finding orthologous non-coding regions between human and model organism genomes. However, existing methods for mapping non-coding genomic regions across species are challenged by the multi-mapping, low precision, and low mapping rate issues. RESULTS: We develop Adaptive liftOver (AdaLiftOver), a large-scale computational tool for identifying functionally similar orthologous non-coding regions across species. AdaLiftOver builds on the UCSC liftOver framework to extend the query regions and prioritizes the resulting candidate target regions based on the conservation of the epigenomic and the sequence grammar features. Evaluations of AdaLiftOver with multiple case studies, spanning both genomic intervals from epigenome datasets across a wide range of model organisms and GWAS SNPs, yield AdaLiftOver as a versatile method for deriving hard-to-obtain human epigenome datasets as well as reliably identifying orthologous loci for GWAS SNPs. AVAILABILITY AND IMPLEMENTATION: The R package and the data for AdaLiftOver is available from https://github.com/keleslab/AdaLiftOver.
Assuntos
Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico , Humanos , Genoma , Genômica/métodos , SoftwareRESUMO
SUMMARY: Quantitative tools are needed to leverage the unprecedented resolution of single-cell high-throughput chromatin conformation (scHi-C) data and integrate it with other single-cell data modalities. We present single-cell gene associating domain (scGAD) scores as a dimension reduction and exploratory analysis tool for scHi-C data. scGAD enables summarization at the gene unit while accounting for inherent gene-level genomic biases. Low-dimensional projections with scGAD capture clustering of cells based on their 3D structures. Significant chromatin interactions within and between cell types can be identified with scGAD. We further show that scGAD facilitates the integration of scHi-C data with other single-cell data modalities by enabling its projection onto reference low-dimensional embeddings. This multi-modal data integration provides an automated and refined cell-type annotation for scHi-C data. AVAILABILITY AND IMPLEMENTATION: scGAD is part of the BandNorm R package at https://sshen82.github.io/BandNorm/articles/scGAD-tutorial.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Genômica , Software , Genoma , Cromossomos , Cromatina , Análise de Célula ÚnicaRESUMO
Organic acid is prevalent in underground environments and, against the backdrop of biogeochemical cycles on Earth, holds significant importance in the degradation of contaminants by redox-active minerals. While earlier studies on the role of organic acid in the generation of reactive oxygen species (ROS) primarily concentrated on electron shuttle or ligand effects, this study delves into the combined impacts of organic acid decomposition and Mackinawite (FeS) oxidation in contaminant transformation under dark aerobic conditions. Using bisphenol A (BPA) as a model, our findings showed that oxalic acid (OA) notably outperforms other acids in enhancing BPA removal, attaining a rate constant of 0.69 h-1. Mass spectrometry characterizations, coupled with anaerobic treatments, advocate for molecule-O2 activation as the principal mechanism behind pollutant transformation. Comprehensive results unveiled that carbon center radicals, initiated by hydroxyl radical (â¢OH) attack, serve as the primary agents in pollutant oxidation, accounting for at least 93.6% of the total â¢OH generation. This dynamic, driven by the decomposition of organic acids and the concurrent formation of carbon-centered radicals, ensures a steady supply of electrons for ROS generation. The obtained information highlights the importance of OA decomposition in the natural attenuation of pollutants and offers innovative strategies for FeS and organic acid-coupled decontamination.
Assuntos
Poluentes Ambientais , Espécies Reativas de Oxigênio , Carbono , Radicais Livres , Compostos Orgânicos , OxirreduçãoRESUMO
The Y-family DNA polymerase η (Polη) is critical for the synthesis past damaged DNA nucleotides in yeast through translesion DNA synthesis (TLS). TLS is initiated by monoubiquitination of proliferating cell nuclear antigen (PCNA) and the subsequent recruitment of TLS polymerases. Although individual structures of the Polη catalytic core and PCNA have been solved, a high-resolution structure of the complex of Polη/PCNA or Polη/monoubiquitinated PCNA (Ub-PCNA) still remains elusive, partly due to the disordered Polη C-terminal region and the flexibility of ubiquitin on PCNA. To circumvent these obstacles and obtain structural insights into this important TLS polymerase complex, we developed photo-activatable PCNA and Ub-PCNA probes containing a p-benzoyl-L-phenylalanine (pBpa) crosslinker at selected positions on PCNA. By photo-crosslinking the probes with full-length Polη, specific crosslinking sites were identified following tryptic digestion and tandem mass spectrometry analysis. We discovered direct interactions of the Polη catalytic core and its C-terminal region with both sides of the PCNA ring. Model building using the crosslinking site information as a restraint revealed multiple conformations of Polη in the polymerase complex. Availability of the photo-activatable PCNA and Ub-PCNA probes will also facilitate investigations into other PCNA-containing complexes important for DNA replication, repair and damage tolerance.
Assuntos
DNA Polimerase Dirigida por DNA/genética , DNA/biossíntese , Antígeno Nuclear de Célula em Proliferação/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/genética , Benzofenonas/farmacologia , DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/ultraestrutura , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura , Mutação/genética , Fenilalanina/análogos & derivados , Fenilalanina/farmacologia , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/ultraestrutura , Ligação Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Ubiquitina/química , Ubiquitina/ultraestruturaRESUMO
The widespread spread of antibiotic resistance genes (ARGs) in hyporheic zone (HZ) has become an emerging environmental problem due to their potentially harmful nature. In this research, three different oxygen treatment systems were set up to study the effects of oxygen changes on the abundance of ARGs in the HZ. In addition, the effects of temperature and salinity on ARGs were investigated under aerobic and anaerobic systems, respectively. The bacterial community composition of sediment samples and the relationship with ARGs were analyzed. The explanation ratio and causality of the driving factors affecting ARGs were analyzed using variation partitioning analysis (VPA) and structural equation model (SEM). The relative abundance of ARGs and mobile genetic elements (MGEs) in the anaerobic system increased significantly, which was higher than that in the aerobic system and the aerobic-anaerobic interaction system. The experiment of salinity and temperature also further proved this result. There were many bacterial communities that affected tetracycline and sulfonamide ARGs in sediments, and these host bacteria are mainly concentrated in Proteobacteria, Firmicutes and Bacteroidetes. VPA and SEM further revealed that the abundance of ARGs was mainly influenced by changes in bacterial communities and oxygen conditions, and horizontal gene transfer (HGT) of MGEs also had a positive effect on the spread of ARGs. Those findings suggest that complex oxygen conditions in the HZ alter bacterial communities and promote MGEs-mediated horizontal transfer, which together lead to the spread of ARGs. This study has value as a reference for formulating effective strategies to minimize the propagation of ARGs in underground environment.
Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , SulfanilamidaRESUMO
Photocaged cell-permeable ubiquitin probe holds promise in profiling the activity of cellular deubiquitinating enzymes (DUBs) with the much needed temporal control. Here we report a new photocaged cell-permeable ubiquitin probe that undergoes photoactivation upon 365 nm UV treatment and enables intracellular deubiquitinating enzyme profiling. We used a semisynthetic approach to generate modular ubiquitin-based probe containing a tetrazole-derived warhead at the C-terminus of ubiquitin and employed a cyclic polyarginine cell-penetrating peptide (cR10) conjugated to the N-terminus of ubiquitin via a disulfide linkage to deliver the probe into live cells. Upon 365 nm UV irradiation, the tetrazole group is converted to a nitrilimine intermediate in situ, which reacts with nearby nucleophilic cysteine residue from the DUB active site. The new photocaged cell-permeable probe showed good reactivity toward purified DUBs, including USP2, UCHL1, and UCHL3, upon photoirradiation. The Ub-tetrazole probe was also assessed in HeLa cell lysate and showed robust labeling only upon photoactivation. We further carried out protein profiling in intact HeLa cells using the new photocaged cell-permeable ubiquitin probe and identified DUBs captured by the probe using label-free quantitative (LFQ) mass spectrometry. Importantly, the photocaged cell-permeable ubiquitin probe captured DUBs specifically in respective G1/S and G2/M phases in synchronized HeLa cells. Moreover, using this probe DUBs were profiled at different time points following the release of HeLa cells from G1/S phase. Our results showed that photocaged cell-permeable probe represents a valuable new tool for achieving a better understanding of the cellular functions of DUBs.
Assuntos
Enzimas Desubiquitinantes/análise , Sondas Moleculares/química , Ubiquitina/química , Domínio Catalítico , Permeabilidade da Membrana Celular , Reagentes de Ligações Cruzadas/química , Cisteína/química , Ativação Enzimática , Células HeLa , Humanos , Cinética , Espectrometria de Massas , Peptídeos/química , Processos Fotoquímicos , Exposição à Radiação , Fatores de Tempo , Raios UltravioletaRESUMO
Advancement in our knowledge of deubiquitinases (DUBs) and their biological functions requires biochemical tools permitting interrogation of DUB activities under physiologically relevant conditions. Activity-based DUB probes (DUB ABPs) have been widely used in investigating the function and activity of DUBs. However, most ubiquitin (Ub)-based DUB ABPs are not cell-permeable, limiting their utility to purified proteins and cell lysates. Lysis of cells usually leads to dilution of the cytoplasm and disruption of the normal cellular organization, which may alter the activity of many DUBs and DUB complexes. Here, we report a new class of cell-permeable DUB ABPs that enable intracellular DUB profiling. We used a semisynthetic approach to generate modular ubiquitin-based DUB probes containing a reactive warhead for covalent trapping of DUBs with a catalytic cysteine. We employed cell-penetrating peptides (CPPs), particualrly cyclic polyarginine (cR10), to deliver the DUB ABPs into cells, as confirmed using live-cell fluorescence microscopy and DUB ABPs containing a fluorophore at the C-terminus of Ub. In comparison to TAT, enhanced intacellular delivery was observed through conjugation of a cyclic polyarginine (cR10) to the N-terminus of ubiquitin via a disulfide linkage. Using the new cell-permeable DUB ABPs, we carried out DUB profiling in intact HeLa cells, and identified active DUBs using immunocapture and label-free quantitative mass spectrometry. Additionally, we demonstrated that the cell-permeable DUB ABPs can be used in assessing the inhibition of DUBs by small-molecule inhibitors in intact cells. Our results indicate that cell-permeable DUB ABPs hold great promise in providing a better understanding of the cellular functions of DUBs and advancing drug discovery efforts targeting human DUBs.
Assuntos
Enzimas Desubiquitinantes/metabolismo , Corantes Fluorescentes/química , Sondas Moleculares/química , Ubiquitinas/química , Permeabilidade da Membrana Celular , Enzimas Desubiquitinantes/análise , Enzimas Desubiquitinantes/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/farmacocinética , Células HeLa , Humanos , Microscopia de Fluorescência , Sondas Moleculares/farmacocinética , Peptídeos/química , Peptídeos/farmacocinética , Ubiquitinas/farmacocinéticaRESUMO
INTRODUCTION: UEV1A encodes a ubiquitin-conjugating enzyme variant (Ubc13), which is required for Ubc13-catalyzed Lys63-linked polyubiquitination of target proteins and nuclear factor κB (NF-кB) activation. Previous reports have correlated the level of UEV1A expression with tumorigenesis; however, the detailed molecular events leading to tumors particularly breast cancer and metastasis are unclear. This study is to investigate roles of different UEV1 splicing variants, and its close homolog MMS2, in promoting tumorigenesis and metastasis in breast cancer cells. METHODS: We experimentally manipulated the UEV1 and MMS2 levels in MDA-MB-231 breast cancer cells and monitored their effects on cell invasion and migration, as well as tumor formation and metastasis in xenograft mice. The underlying molecular mechanisms leading to metastasis were also examined. RESULTS: It was found that overexpression of UEV1A alone, but not UEV1C or MMS2, is sufficient to induce cell invasion in vitro and metastasis in vivo. This process is mediated by NF-κB activation and requires functional Ubc13. Our experimental data establish that among NF-κB target genes, UEV1A-regulated matrix metalloproteinase-1 (MMP1) expression plays a critical role in cell invasion and metastasis. Interestingly, experimental depletion of UEV1 in MDA-MB-231 cells reduces MMP1 expression and prevents tumor formation and metastasis in a xenograft mouse model, while overexpression of MMP1 overrides the metastasis effects in UEV1-depleted cells. CONCLUSIONS: These results identify UEV1A as a potential therapeutic target in the treatment of metastasic breast cancers.
Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Metaloproteinase 1 da Matriz/genética , NF-kappa B/metabolismo , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Expressão Gênica , Xenoenxertos , Humanos , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Invasividade Neoplásica , Metástase Neoplásica , Ligação Proteica , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genéticaRESUMO
Recently, the investigation of neuroprotective peptides has gained attention in addressing memory impairment and cognitive decline. Although the potential neuroprotective peptide Serine-Phenylalanine-Glycine-Aspartic acid-Isoleucine (SFGDI) has been identified from sea cucumber, the molecular mechanisms remain unclear. This study was conducted to explore the neuroprotection of SFGDI against 3-TYP-induced oxidative stress in BV2 cells. The results showed a retention rate of 76.70% during in vitro simulated gastrointestinal digestion and an absorption rate of 10.41% in a rat-everted gut sac model for SFGDI. Two hours following the administration of SFGDI via gavage in mice, a notable fluorescence was observed in the brain, indicating a potential neuroprotection of SFGDI through its interactions with nerve cells. By utilizing a model of oxidative stress injury induced by 3-TYP in BV2 cells, it was determined that pretreatment with SFGDI (50-200 µg mL-1) resulted in a dose-dependent reduction in the acetylated SOD level, leading to enhanced SOD activity and reduced levels of ROS and MDA. In addition, this pretreatment triggered an increase in unsaturated lipid levels, which helped maintain the intracellular lipid metabolism balance and preserve the mitochondrial function and glycolysis levels to regulate energy metabolism. The results of this study indicate that SFGDI demonstrates neuroprotective properties through its modulation of the Sirt3/SOD/ROS pathway, regulation of lipid metabolism, and enhancement of energy metabolism in BV2 cells. These findings suggest potential novel therapeutic approaches for addressing Sirt3-related memory deficits and neurodegenerative disorders.
Assuntos
Metabolismo Energético , Fármacos Neuroprotetores , Estresse Oxidativo , Transdução de Sinais , Animais , Masculino , Camundongos , Ratos , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Superóxido Dismutase/metabolismoRESUMO
Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an 'all in one' solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.
Assuntos
Estreptavidina , Estreptavidina/química , Estreptavidina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos/metabolismo , Humanos , Biotinilação , Microscopia de Fluorescência/métodos , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismoRESUMO
We introduce HiSC4D, a novel Human-centered interaction and 4D Scene Capture method, aimed at accurately and efficiently creating a dynamic digital world, containing large-scale indoor-outdoor scenes, diverse human motions, rich human-human interactions, and human-environment interactions. By utilizing body-mounted IMUs and a head-mounted LiDAR, HiSC4D can capture egocentric human motions in unconstrained space without the need for external devices and pre-built maps. This affords great flexibility and accessibility for human-centered interaction and 4D scene capturing in various environments. Taking into account that IMUs can capture human spatially unrestricted poses but are prone to drifting for long-period using, and while LiDAR is stable for global localization but rough for local positions and orientations, HiSC4D employs a joint optimization method, harmonizing all sensors and utilizing environment cues, yielding promising results for long-term capture in large scenes. To promote research of egocentric human interaction in large scenes and facilitate downstream tasks, we also present a dataset, containing 8 sequences in 4 large scenes (200 to 5,000 m2 ), providing 36k frames of accurate 4D human motions with SMPL annotations and dynamic scenes, 31k frames of cropped human point clouds, and scene mesh of the environment. A variety of scenarios, such as the basketball gym and commercial street, alongside challenging human motions, such as daily greeting, one-on-one basketball playing, and tour guiding, demonstrate the effectiveness and the generalization ability of HiSC4D. The dataset and code will be publicly available for research purposes.
RESUMO
Pharmacophores such as hydroxyethylamine (HEA) and phthalimide (PHT) have been identified as potential synthons for the development of compounds against various parasitic infections. In order to further advance our progress, we conducted an experiment utilising a collection of PHT and HEA derivatives through phenotypic screening against a diverse set of protist parasites. This approach led to the identification of a number of compounds that exhibited significant effects on the survival of Entamoeba histolytica, Trypanosoma brucei, and multiple life-cycle stages of Leishmania spp. The Leishmania hits were pursued due to the pressing necessity to expand our repertoire of reliable, cost-effective, and efficient medications for the treatment of leishmaniases. Antileishmanials must possess the essential capability to efficiently penetrate the host cells and their compartments in the disease context, to effectively eliminate the intracellular parasite. Hence, we performed a study to assess the effectiveness of eradicating L. infantum intracellular amastigotes in a model of macrophage infection. Among eleven L. infantum growth inhibitors with low-micromolar potency, PHT-39, which carries a trifluoromethyl substitution, demonstrated the highest efficacy in the intramacrophage assay, with an EC50 of 1.2 +/- 3.2 µM. Cytotoxicity testing of PHT-39 in HepG2 cells indicated a promising selectivity of over 90-fold. A chemogenomic profiling approach was conducted using an orthology-based method to elucidate the mode of action of PHT-39. This genome-wide RNA interference library of T. brucei identified sensitivity determinants for PHT-39, which included a P-type ATPase that is crucial for the uptake of miltefosine and amphotericin, strongly indicating a shared route for cellular entry. Notwithstanding the favourable properties and demonstrated efficacy in the Plasmodium berghei infection model, PHT-39 was unable to eradicate L. major infection in a murine infection model of cutaneous leishmaniasis. Currently, PHT-39 is undergoing derivatization to optimize its pharmacological characteristics.
Assuntos
Antiprotozoários , Leishmania infantum , Leishmania , Leishmaniose Cutânea , Humanos , Animais , Camundongos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Anfotericina B/uso terapêutico , Leishmaniose Cutânea/parasitologia , Ftalimidas/farmacologia , Ftalimidas/uso terapêuticoRESUMO
OBJECTIVE: To explore clinical effect of closed reduction percutaneous elastic intramedullary nail assisted by arthrography in the treatment of radial neck fracture in children. METHODS: A retrospective analysis was performed on 23 children with radial neck fracture treated with arthrography assisted closed reduction and percutaneous elastic intramedullary nail internal fixation (arthrography with elastic nail group) from January 2019 to December 2022, including 12 males and 11 females, aged from 2 to 12 years old with an average of (7.36±1.89) years old;According to Judet fracture types, 14 children were type â ¢ and 9 children were type â £. In addition, 23 children with radial neck fracture were selected from January 2015 to December 2018 who were treated with closed reduction and percutaneous elastic intramedullary nail fixation (elastic nail group), including 11 males and 12 females, aged from 2 to 14 years old with an average of (7.50±1.91) years old;Judet classification included 15 children were type â ¢ and 8 children were type â £. Operative time and intraoperative fluoroscopy times were compared between two groups. Metaizeau evaluation criteria was used to evaluate fracture reduction, and Tibone-Stoltz evaluation criteria was used to evaluate functional recovery of elbow between two groups. RESULTS: Both groups were followed up for 12 to 24 months with an average of (16.56±6.34) months. Operative time and intraoperative fluoroscopy times of elastic nail group were (56.64±19.27) min and (21.13±7.87) times, while those of joint angiography with elastic nail group were (40.33±11.50) min and (12.10±3.52) times;there were difference between two groups (P<0.05). According to Metaizeau evaluation, 11 patients got excellent result, 9 good and 3 fair in joint angiography with elastic nail group, while in elastic nail group, 5 excellent, 13 good, 4 acceptable, and 1 poor;the difference between two groups was statistically significant (P<0.05). According to Tibone-Stoltz criteria, 14 patients got excellent result, 8 good, and 1 fair in joint arthrography with elastic nail group;while in elastic nail group, 12 patients got excellent result, 9 good, 1 fair and 1 poor;there was no significant difference between two groups (P>0.05). CONCLUSION: Compared to percutaneous elastic intramedullary nail fixation, closed reduction assisted by arthrography has advantages of reduced operation time, decreased intraoperative fluoroscopy frequency, and improved fracture reduction. Arthrography enables clear visualization of the anatomical structures of radius, head, neck, bone, and cartilage in children, facilitating comprehensive display of fracture reduction and brachioradial joint alignment. This technique more precisely guides the depth of elastic intramedullary nail implantation in radius neck, thereby enhancing surgical efficiency and success rate.
Assuntos
Artrografia , Pinos Ortopédicos , Fixação Intramedular de Fraturas , Fraturas do Rádio , Humanos , Feminino , Masculino , Criança , Fixação Intramedular de Fraturas/métodos , Fixação Intramedular de Fraturas/instrumentação , Pré-Escolar , Estudos Retrospectivos , Fraturas do Rádio/cirurgia , Fraturas do Rádio/diagnóstico por imagem , Artrografia/métodos , Adolescente , Resultado do Tratamento , Fraturas da Cabeça e do Colo do RádioRESUMO
The ALPK1 (alpha-kinase 1)-TIFA (TRAF-interacting protein with fork head-associated domain)-TRAF6 signaling pathway plays a pivotal role in regulating inflammatory processes, with TIFA and TRAF6 serving as key molecules in this cascade. Despite its significance, the functional mechanism of TIFA-TRAF6 remains incompletely understood. In this study, we unveil that TIFA undergoes liquid-liquid phase separation (LLPS) induced by ALPK1 in response to adenosine diphosphate (ADP)-ß-D-manno-heptose (ADP-Hep) recognition. The phase separation of TIFA is primarily driven by ALPK1, the pT9-FHA domain, and the intrinsically disordered region segment. Simultaneously, TRAF6 exhibits phase separation during ADP-Hep-induced inflammation, a phenomenon observed consistently across various inflammatory signal pathways. Moreover, TRAF6 is recruited within the TIFA condensates, facilitating lysine (K) 63-linked polyubiquitin chain synthesis. The subsequent recruitment, enrichment, and activation of downstream effectors within these condensates contribute to robust inflammatory signal transduction. Utilizing a novel chemical probe (compound 22), our analysis demonstrates that the activation of the ALPK1-TIFA-TRAF6 signaling pathway in response to small molecules necessitates the phase separation of TIFA. In summary, our findings reveal TIFA as a sensor for upstream signals, initiating the LLPS of itself and downstream proteins. This process results in the formation of membraneless condensates within the ALPK1-TIFA-TRAF6 pathway, suggesting potential applications in therapeutic biotechnology development.
RESUMO
IEEE VAST Challenge 2021 provides fruitful data to test the visual analytics capability of participants. We summarize our work in this article. Trajectory data and consumption data contain a lot of information, such as consumption patterns, behavior characteristics, and so on. The information can provide favorable clues for law enforcement departments to crack a case about missing employees. We designed a visual analytics system called Sundial for spatio-temporal situation awareness with multidata fusion. It contains three views, that is, consumption view, temporal behavior view, and spatial-temporal map. With the system, analysts can effectively identify the consumption and behavior patterns of employees, and detect the suspicious activities and informal or formal relationships. Through case analysis, we illustrated how to use the system and obtain effective information.
RESUMO
Loss of bone mass can occur in mammals after prolonged disuse but the situation for hibernators that are in a state of torpor for many months of the year is not yet fully understood. The present study assesses the bone remodeling mechanisms present in Daurian ground squirrels (Spermophilus dauricus) during hibernation as compared with a model of hindlimb disuse. Differences in microstructure, mechanical properties, bone remodeling-related proteins (Runx2, OCN, ALP, RANKL, CTK and MMP-9) and key proteins of Wnt/ß-catenin signaling pathway (GSK-3ß and phospho-ß-catenin) were evaluated in ground squirrels under 3 conditions: summer active (SA) vs. hibernation (HIB) vs. hindlimb unloaded (HLU). The results indicated that the body weight in HLU ground squirrels was lower than the SA group, and the middle tibia diameter in the HLU group was lower than that in SA and HIB groups. The thickness of cortical and trabecular bone in femurs from HLU ground squirrels was lower than in SA and HIB groups. Most parameters of the tibia in the HLU group were lower than those in SA and HIB groups, which indicated cortical bone loss in ground squirrels. Moreover, our data showed that the changes in microscopic parameters in the femur were more obvious than those in the tibia in HLU and HIB ground squirrels. The levels of Runx2 and ALP were lower in HLU ground squirrels than SA and HIB groups. The protein levels of OCN were unchanged in the three groups, but the protein levels of ALP were lower in the HLU group than in SA and HIB groups. RANKL, CTK and MMP-9 protein levels were significantly decreased in tibia of HLU ground squirrels as compared with SA and HIB groups. In addition, the protein expression levels of RANKL, CTK and MMP-9 showed no statistical difference between SA and HIB ground squirrels. Thus, the mechanisms involved in the balance between bone formation and resorption in hibernating and hindlimb unloading ground squirrels may be different. The present study showed that in femur, the Wnt signaling pathway was inhibited, the protein level of GSK-3ß was increased, and the protein expression of phospho-ß-catenin was decreased in the HIB group as compared with the SA group, which indicates that the Wnt signaling pathway has a great influence on the femur of the HIB group. In conclusion, the natural anti-osteoporosis properties of Daurian ground squirrels are seasonal. The squirrels do not experience bone loss when they are inactive for a long time during hibernation, but the mechanisms of anti-osteoporosis did not work in HLU summer active squirrels.
Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Hibernação , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , beta Catenina/metabolismo , Sciuridae/fisiologia , Elevação dos Membros Posteriores , Remodelação Óssea , Membro Posterior/fisiologia , Hibernação/fisiologiaRESUMO
Purpose: To determine the role of Lactobacillus strains and their combinations in inhibiting the colonization of H. pylori and gastric mucosa inflammation. Methods: Human gastric adenocarcinoma AGS cells were incubated with H. pylori and six probiotic strains (Lactobacillus acidophilus NCFM, L. acidophilus La-14, Lactiplantibacillus plantarum Lp-115, Lacticaseibacillus paracasei Lpc-37, Lacticaseibacillus rhamnosus Lr-32, and L. rhamnosus GG) and the adhesion ability of H. pylori in different combinations was evaluated by fluorescence microscopy and urease activity assay. Male C57BL/6 mice were randomly divided into five groups (uninfected, H. pylori, H. pylori+NCFM, H. pylori+Lp-115, and H. pylori+NCFM+Lp-115) and treated with two lactobacilli strains (NCFM and Lp-115) for six weeks. H. pylori colonization and tissue inflammation statuses were determined by rapid urease test, Hematoxylin-Eosin (HE) staining, immunohistochemistry, and qRT-PCR and ELISA. Results: L. acidophilus NCFM, L. acidophilus La-14, L. plantarum Lp-115, L. paracasei Lpc-37, L. rhamnosus Lr-32, and L. rhamnosus GG reduced H. pylori adhesion and inflammation caused by H. pylori infection in AGS cells and mice. Among all probiotics L. acidophilus NCFM and L. plantarum, Lp-115 showed significant effects on the H. pylori eradication and reduction of inflammation in-vitro and in-vivo. Compared with the H. pylori infection group, the mRNA and protein expression levels of IL-8 and TNF-α in the six Lactobacillus intervention groups were significantly reduced. The changes in the urease activity (ureA and ureB) for 1-7h in each group showed that L. acidophilus NCFM, L. acidophilus La-14, L. plantarum Lp-115, and L. rhamnosus GG effectively reduced the colonization of H. pylori. We observed a higher ratio of lymphocyte and plasma cell infiltration into the lamina propria of the gastric mucosa and neutrophil infiltration in H. pylori+NCFM+Lp-115 mice. The infiltration of inflammatory cells in lamina propria of the gastric mucosa was reduced in the H. pylori+NCFM+Lp-115 group. Additionally, the expression of IFN-γ was decreased significantly in the NCFM and Lp-115 treated C57BL/6 mice. Conclusions: L. acidophilus NCFM and L. plantarum Lp-115 can reduce the adhesion of H. pylori and inhibit the gastric inflammatory response caused by H. pylori infection.
Assuntos
Gastrite , Helicobacter pylori , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Lactobacillus acidophilus , Urease , Modelos Animais de Doenças , Gastrite/prevenção & controle , Inflamação , LactobacillusRESUMO
Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.
Assuntos
Deficiência de GATA2 , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Deficiência de GATA2/genética , Interleucina-6/genética , Hematopoese/genética , Expressão Gênica , Dedos de Zinco/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismoRESUMO
Single-cell high-throughput chromatin conformation capture methodologies (scHi-C) enable profiling of long-range genomic interactions. However, data from these technologies are prone to technical noise and biases that hinder downstream analysis. We develop a normalization approach, BandNorm, and a deep generative modeling framework, scVI-3D, to account for scHi-C specific biases. In benchmarking experiments, BandNorm yields leading performances in a time and memory efficient manner for cell-type separation, identification of interacting loci, and recovery of cell-type relationships, while scVI-3D exhibits advantages for rare cell types and under high sparsity scenarios. Application of BandNorm coupled with gene-associating domain analysis reveals scRNA-seq validated sub-cell type identification.