Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(2): 488-93, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548169

RESUMO

Pulmonary immunization enhances local humoral and cell-mediated mucosal protection, which are critical for vaccination against lung-specific pathogens such as influenza or tuberculosis. A variety of nanoparticle (NP) formulations have been tested preclinically for pulmonary vaccine development, yet the role of NP surface charge on downstream immune responses remains poorly understood. We used the Particle Replication in Non-Wetting Templates (PRINT) process to synthesize hydrogel NPs that varied only in surface charge and otherwise maintained constant size, shape, and antigen loading. Pulmonary immunization with ovalbumin (OVA)-conjugated cationic NPs led to enhanced systemic and lung antibody titers compared with anionic NPs. Increased antibody production correlated with robust germinal center B-cell expansion and increased activated CD4(+) T-cell populations in lung draining lymph nodes. Ex vivo treatment of dendritic cells (DCs) with OVA-conjugated cationic NPs induced robust antigen-specific T-cell proliferation with ∼ 100-fold more potency than soluble OVA alone. Enhanced T-cell expansion correlated with increased expression of surface MHCII, T-cell coactivating receptors, and key cytokines/chemokine expression by DCs treated with cationic NPs, which were not observed with anionic NPs or soluble OVA. Together, these studies highlight the importance of NP surface charge when designing pulmonary vaccines, and our findings support the notion that cationic NP platforms engender potent humoral and mucosal immune responses.


Assuntos
Imunização/métodos , Pulmão/imunologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Animais , Formação de Anticorpos , Antígenos/administração & dosagem , Linfócitos T CD4-Positivos/imunologia , Quimiocinas/biossíntese , Citocinas/biossíntese , Células Dendríticas/imunologia , Hidrogéis/administração & dosagem , Hidrogéis/química , Imunidade nas Mucosas , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Eletricidade Estática , Propriedades de Superfície , Receptores Toll-Like/metabolismo , Vacinas de Subunidades Antigênicas/administração & dosagem
2.
Mol Pharm ; 13(5): 1626-35, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27012934

RESUMO

Pulmonary delivery has great potential for delivering biologics to the lung if the challenges of maintaining activity, stability, and ideal aerosol characteristics can be overcome. To study the interactions of a biologic in the lung, we chose butyrylcholinesterase (BuChE) as our model enzyme, which has application for use as a bioscavenger protecting against organophosphate exposure or for use with pseudocholinesterase deficient patients. In mice, orotracheal administration of free BuChE resulted in 72 h detection in the lungs and 48 h in the broncheoalveolar lavage fluid (BALF). Free BuChE administered to the lung of all mouse backgrounds (Nude, C57BL/6, and BALB/c) showed evidence of an acute cytokine (IL-6, TNF-α, MIP2, and KC) and cellular immune response that subsided within 48 h, indicating relatively safe administration of this non-native biologic. We then developed a formulation of BuChE using Particle Replication in Non-Wetting Templates (PRINT). Aerosol characterization demonstrated biologically active BuChE 1 µm cylindrical particles with a mass median aerodynamic diameter of 2.77 µm, indicative of promising airway deposition via dry powder inhalers (DPI). Furthermore, particulate BuChE delivered via dry powder insufflation showed residence time of 48 h in the lungs and BALF. The in vivo residence time, immune response, and safety of particulate BuChE delivered via a pulmonary route, along with the cascade impaction distribution of dry powder PRINT BuChE, showed promise in the ability to deliver active enzymes with ideal deposition characteristics. These findings provide evidence for the feasibility of optimizing the use of BuChE in the clinic; PRINT BuChE particles can be readily formulated for use in DPIs, providing a convenient and effective treatment option.


Assuntos
Aerossóis/administração & dosagem , Butirilcolinesterase/administração & dosagem , Pulmão/efeitos dos fármacos , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Química Farmacêutica/métodos , Quimiocina CXCL2/metabolismo , Inaladores de Pó Seco/métodos , Interleucina-6/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Tamanho da Partícula , Pós/administração & dosagem , Fator de Necrose Tumoral alfa/metabolismo
3.
Nanomedicine ; 12(3): 677-687, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26656533

RESUMO

Engineered nanoparticles have the potential to expand the breadth of pulmonary therapeutics, especially as respiratory vaccines. Notably, cationic nanoparticles have been demonstrated to produce superior local immune responses following pulmonary delivery; however, the cellular mechanisms of this increased response remain unknown. To this end, we investigated the cellular response of lung APCs following pulmonary instillation of anionic and cationic charged nanoparticles. While nanoparticles of both surface charges were capable of trafficking to the draining lymph node and were readily internalized by alveolar macrophages, both CD11b and CD103 lung dendritic cell (DC) subtypes preferentially associated with cationic nanoparticles. Instillation of cationic nanoparticles resulted in the upregulation of Ccl2 and Cxc10, which likely contributes to the recruitment of CD11b DCs to the lung. In total, these cellular mechanisms explain the increased efficacy of cationic formulations as a pulmonary vaccine carrier and provide critical benchmarks in the design of pulmonary vaccine nanoparticles. FROM THE CLINICAL EDITOR: Advance in nanotechnology has allowed the production of precise nanoparticles as vaccines. In this regard, pulmonary delivery has the most potential. In this article, the authors investigated the interaction of nanoparticles with various types of lung antigen presenting cells in an attempt to understand the cellular mechanisms. The findings would further help the future design of much improved vaccines for clinical use.


Assuntos
Células Dendríticas/metabolismo , Íons/química , Íons/farmacocinética , Pulmão/metabolismo , Linfonodos/metabolismo , Nanopartículas/química , Vacinas/administração & dosagem , Animais , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacocinética , Feminino , Humanos , Íons/administração & dosagem , Íons/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Propriedades de Superfície
4.
Pharm Res ; 32(10): 3248-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26002743

RESUMO

PURPOSE: We evaluated the role of a poly(ethylene glycol) (PEG) surface coating to increase residence times and alter the cellular fate of nano- and microparticles delivered to the lung. METHODS: Three sizes of PRINT hydrogel particles (80 × 320 nm, 1.5 and 6 µm donuts) with and without a surface PEG coating were instilled in the airways of C57/b6 mice. At time points of 1, 7, and 28 days, BALF and whole lungs were evaluated for the inflammatory cytokine Il-6 and chemokine MIP-2, histopathology, cellular populations of macrophages, dendritic cells (DCs), and granulocytes, and particulate uptake within these cells through flow cytometry, ELISAs, and fluorescent imaging. RESULTS: Particles of all sizes and surface chemistries were readily observed in the lung with minimal inflammatory response at all time points. Surface modification with PEGylation was found to significantly increase lung residence times and homogeneous lung distribution, delaying macrophage clearance of all sizes, with the largest increase in residence time observed for 80 × 320 nm particles. Additionally, it was observed that DCs were recruited to the airway following administration of unPEGylated particles and preferentially associated with these particles. CONCLUSIONS: Pulmonary drug delivery vehicles designed with a PEG surface coating can be used to delay particle uptake and promote cell-specific targeting of therapeutics.


Assuntos
Pulmão/metabolismo , Polietilenoglicóis/metabolismo , Polímeros/metabolismo , Animais , Linhagem Celular , Quimiocina CXCL2/metabolismo , Células Dendríticas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Feminino , Granulócitos/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/metabolismo , Tamanho da Partícula
5.
ACS Nano ; 10(1): 861-70, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26592524

RESUMO

Long-circulating nanoparticles are essential for increasing tumor accumulation to provide therapeutic efficacy. While it is known that tumor presence can alter the immune system, very few studies have explored this impact on nanoparticle circulation. In this report, we demonstrate how the presence of a tumor can change the local and global immune system, which dramatically increases particle clearance. We found that tumor presence significantly increased clearance of PRINT hydrogel nanoparticles from the circulation, resulting in increased accumulation in the liver and spleen, due to an increase in M2-like macrophages. Our findings highlight the need to better understand interactions between immune status and nanoparticle clearance, and suggest that further consideration of immune function is required for success in preclinical and clinical nanoparticle studies.


Assuntos
Antineoplásicos/farmacocinética , Cisplatino/farmacocinética , Neoplasias Pulmonares/imunologia , Pulmão/imunologia , Nanopartículas/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Cisplatino/química , Cisplatino/farmacologia , Composição de Medicamentos , Orelha/anatomia & histologia , Orelha/irrigação sanguínea , Humanos , Hidrogéis/química , Imunidade Inata , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Nanopartículas/química , Transplante de Neoplasias , Cultura Primária de Células , Baço/efeitos dos fármacos , Baço/metabolismo , Imagem com Lapso de Tempo
6.
Bioconjug Chem ; 19(1): 377-84, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18062659

RESUMO

Nonviral gene carriers must associate with and become internalized by cells in order to mediate efficient transfection. Methods to quantitatively measure and distinguish between cell association and internalization of delivery vectors are necessary to characterize the trafficking of vector formulations. Here, we demonstrate the utility of nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labeled oligonucleotides for discrimination between bound and internalized gene carriers associated with cells. Dithionite quenches the fluorescence of extracellular NBD-labeled material, but is unable to penetrate the cell membrane and quench internalized material. We have verified that dithionite-mediated quenching of extracellular materials occurs in both polymer- and lipid-based gene delivery systems incorporating NBD-labeled oligonucleotides. By exploiting this property, the efficiencies of cellular binding and internalization of lipid- and polymer-based vectors were studied and correlated to their transfection efficiencies. Additionally, spatiotemporal information regarding binding and internalization of NBD-labeled gene carriers can be obtained using conventional wide-field fluorescence microscopy, since dithionite-mediated quenching of extracellular materials reveals the intracellular distribution of gene carriers without the need for optical sectioning. Hence, incorporation of environmentally sensitive NBD-oligos into gene carriers allows for facile assessment of binding and internalization efficiencies of vectors in live cells.


Assuntos
Corantes Fluorescentes/análise , Transfecção/métodos , Ditionita/química , Meio Ambiente , Citometria de Fluxo , Fluorescência , Células HeLa , Humanos , Neurônios/citologia , Neurônios/metabolismo , Oligonucleotídeos/metabolismo , Oxidiazóis/química , Oxidiazóis/metabolismo , Oxirredução , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fatores de Tempo , Xantenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA