Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 26(35): 7930-7936, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32337745

RESUMO

Rechargeable lithium-ion batteries (LIBs) dominate the energy market, from electronic devices to electric vehicles, but pursuing greater energy density remains challenging owing to the limited electrode capacity. Although increasing the cut-off voltage of LIBs (>4.4 V vs. Li/Li+ ) can enhance the energy density, the aggravated electrolyte decomposition always leads to a severe capacity fading and/or expiry of the battery. Herein, a new durable electrolyte is reported for high-voltage LIBs. The designed electrolyte is composed of mixed linear alkyl carbonate solvent with certain cyclic carbonate additives, in which use of the ethylene carbonate (EC) co-solvent was successfully avoided to suppress the electrolyte decomposition. As a result, an extremely high cycling stability, rate capability, and high-temperature storage performance were demonstrated in the case of a graphite|LiNi0.6 Co0.2 Mn0.2 O2 (NCM622) battery at 4.45 V when this electrolyte was used. The good compatibility of the electrolyte with the graphite anode and the mitigated structural degradation of the NCM622 cathode are responsible for the high performance at high potentials above 4.4 V. This work presents a promising application of high-voltage electrolytes for pursuing high energy LIBs and provides a straightforward guide to study the electrodes/electrolyte interface for higher stability.

2.
J Colloid Interface Sci ; 663: 961-970, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447409

RESUMO

High-voltage medium-nickel low-cobalt lithium layered oxide cathode materials are intriguing for lithium-ion batteries (LIBs) applications because of their relatively low cost and high capacity. Unfortunately, high charging voltage induces bulk layered structure decline and interface environment deterioration, low cobalt content reduces lithium diffusion kinetics, severely limiting the performance liberation of this kind of cathode. Here, a multifunctional Al/Zr dual cation doping strategy is employed to enhance the electrochemical performance of LiNi0.6Co0.05Mn0.35O2 (NCM) cathode at a high charging cut-off voltage of 4.5 V. On the one hand, Al/Zr co-doping weakens the Li+/Ni2+ mixing through magnetic interactions due to the inexistence of unpaired electrons for Al3+ and Zr4+, thereby increasing the lithium diffusion rate and suppressing the harmful coexistence of H1 and H2 phases. On the other hand, they enhance the lattice oxygen framework stability due to strong Al-O and Zr-O bonds, inhibiting the undesired H2 to H3 phase transition and interface lattice oxygen loss, thereby enhancing the stability of the bulk structure and cathode-electrolyte interface. As a result, Al/Zr co-doped NCM (NCMAZ) shows a 94.2 % capacity retention rate after 100 cycles, while that of NCM is only 79.4 %. NCMAZ also exhibits better rate performance than NCM, with output capacities of 92 mAh/g and 59 mAh/g at a high current density of 5C, respectively. The modification strategy will make the high-voltage medium-nickel low-cobalt cathode closer to practical applications.

3.
Nanomaterials (Basel) ; 12(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889547

RESUMO

Antimony (Sb) demonstrates ascendant reactive activation with lithium ions thanks to its distinctive puckered layer structure. Compared with graphite, Sb can reach a considerable theoretical specific capacity of 660 mAh g-1 by constituting Li3Sb safer reaction potential. Hereupon, with a self-supported organic carbon as a three-dimensional polymer network structure, Sb/carbon (3DPNS-Sb/C) composites were produced through a hydrothermal reaction channel followed by a heat disposal operation. The unique structure shows uniformitarian Sb nanoparticles wrapped in a self-supported organic carbon, alleviating the volume extension of innermost Sb alloying, and conducive to the integrality of the construction. When used as anodes for lithium-ion batteries (LIBs), 3DPNS-Sb/C exhibits a high invertible specific capacity of 511.5 mAh g-1 at a current density of 0.5 A g-1 after 100 cycles and a remarkable rate property of 289.5 mAh g-1 at a current density of 10 A g-1. As anodes, LIBs demonstrate exceptional electrochemical performance.

4.
ACS Appl Mater Interfaces ; 13(1): 717-726, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33389988

RESUMO

The nucleation and growth of spherical Ni0.6Co0.2Mn0.2(OH)2 agglomerates using the hydroxide coprecipitation (HCP) method in the presence of ammonia is investigated through chemical equilibrium calculations and experiments. In the nucleation stage, the transition metal ions in the salt solution gradually complete the nucleation reaction in the diffusion process from pH 5.4 to 11 after dropping into the continuously stirred tank reactor, and then Me(NH3)n2+ and Me(OH)2(s) (Me: Ni, Co, and Mn) reach a dynamic precipitation dissolution equilibrium. In the growth stage, the concentration ratio of Me(NH3)n2+ and OH- (complexation and precipitation, Rc/p) in the solution has an important influence on obtaining high-quality materials, which is further confirmed using the first principles density functional theory calculations on surface energy and adsorption energy. Then, the HCP reaction could be divided into three parts through experiments: incomplete precipitation area (Rc/p > 10.1); time-dependent area (Rc/p = 0.1-10.1); and hard-to-control area (Rc/p <0.1). According to the optimal ratio (Rc/p = 3.4), a prediction formula for the optimal synthesis conditions of the materials is proposed (y = 0.7731 × ln(x + 0.0312) + 11.6708, the optimal pH value (y) corresponds to different ammonia concentrations (x)). The results obtained for the growth reaction mechanism and the prediction scheme would help the modification research of the materials and obtain the desired lithium-layered transition metal oxide cathode material with excellent performance in the shortest time.

5.
ACS Appl Mater Interfaces ; 13(49): 58871-58884, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34859994

RESUMO

High-voltage high-nickel low-cobalt lithium layered oxide cathodes show great application prospects for lithium-ion batteries due to their low cost and high capacity. However, deterioration of the bulk structure and the electrode-electrolyte interface will significantly endanger the cycle life and thermal stability of the battery as the nickel content and voltage increase. We present here a lattice doping strategy to greatly improve the cell performance by doping a small dose of Ti (2 mol %) in LiNi0.6Co0.05Mn0.35O2. Through density functional theory calculations, we know that the diffusion energy barrier of Li+ decreases and the activation energy of surface lattice oxygen atom loss increases after Ti doping, thereby improving the rate performance and inhibiting the undesired phase transition. The battery in situ X-ray diffraction (XRD) pattern demonstrates that Ti doping tunes the H1-H2 phase-transition process from a two-phase reaction to a single-phase reaction and inhibits the undesired H2-H3 phase transition, minimizing the mechanical degradation. The variable temperature in situ XRD reveals delayed phase-transition temperature to improve thermal stability. These improvements can be attributed to Ti doping to passivate the reactivity of the layered oxide cathode, which is fundamentally related to the strong Ti-O bond and no unpaired electrons for Ti4+. This work provides valuable strategic guidelines for the use of high-voltage high-nickel low-cobalt cathodes in lithium-ion batteries.

6.
ACS Appl Mater Interfaces ; 13(34): 40471-40480, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34404202

RESUMO

Metal-organic framework (MOF)-derived materials are attracting considerable attention because of the moldability in compositions and structures, enabling greater performances in diverse applications. However, the nanostructural control of multicomponent MOF-based complexes remains challenging due to the complexity of reaction mechanisms. Herein, we present a surface-induced self-nucleation-growth mechanism for the zeolitic imidazolate framework (ZIF) to prepare a new type of ZIF-8@SiO2 polyhedral nanoparticles. We discover that the Zn hydroxide moieties (Zn-OH) within ZIF-8 can trigger the hydrolysis of tetraethyl orthosilicate effectively on the ZIF-8 surface precisely, avoiding the formation of free orthosilicic acid (Si(OH)4) successfully. This is a pioneering work to elucidate the importance of MOF surface properties for preparing multicomponent materials. Then, a novel well-dispersed silicon hollow nanocage (H-Si@C) modified by the carbon was prepared after removal of the ZIF-8 and magnesiothermic reduction. The as-prepared H-Si@C demonstrates an overwhelmingly high lithium storage capability and extraordinary stability in lithium-ion batteries (LIBs), particularly the impressive performances when it was matched with the LiNi0.6Co0.2Mn0.2O2 cathode in a full cell. The MOF surface-induced self-nucleation-growth strategy is useful for preparing more multifunctional materials, while the study of lithium storage performances of the H-Si@C material is practical for LIB applications.

7.
J Colloid Interface Sci ; 597: 334-344, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33894544

RESUMO

Reducing cobalt dependency has attracted great interest for lithium batteries manufacturing due to limited cobalt resources and high prices. A highly promising LiNi0.6Co0.05Mn0.35O2 (NCM60535) high-nickel low cobalt lithium layered oxide cathode material is successfully prepared by systematically examining the two key synthesis conditions of pH and annealing temperature. The obtained materials exhibit a uniform size distribution, good spherical morphology, clear structure, and homogeneous element distribution. NCM60535 shows competitive electrochemical properties: when compared with the LiNi1/3Co1/3Mn1/3O2, with a higher output specific capacity and cycling stability at 4.3 V low voltage; when compared with the LiNi0.8Co0.1Mn0.1O2, with a comparable discharge capacity but relatively poor cycling stability at 4.5 V high voltage. A new type of electrolyte that combines high lithium salt concentration, EC-free solvent system, and VC and LiPO2F2 functional additives is designed and greatly improves the electrochemical properties of the material under high voltage. Moreover, it also delivers superior electrochemical properties in high voltage lithium full battery (270 Wh Kg-1). And we suggest that NCM60535 is expected to become a substitute for the currently widely commercialized LiNi1/3Co1/3Mn1/3O2 (NCM333), LiNi0.5Co0.2Mn0.3O2 (NCM523), LiNi0.6Co0.2Mn0.2O2 (NCM622), and LiNi0.8Co0.1Mn0.1O2 (NCM811) due to its relatively low production cost and competitive electrochemical properties.

8.
Nanoscale ; 13(6): 3808-3816, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33565538

RESUMO

Modification using carbon nanotubes (CNTs) is one of the most important strategies to boost the performance of materials in various applications, among which the CNT-modified silicon-based anodes have gained considerable attention in lithium-ion batteries (LIBs) due to their improved conductivity and cycle stability. However, the realization of a close-knit CNT coating on silicon (Si) through an efficient and cost-effective approach remains challenging. Herein, a new in situ self-catalytic method by acetylene treatment is presented, in which, CNTs can be directly grown and knitted on the SiOx particles to construct a conductive additive-free SiOx@CNT anode. The in situ grown CNTs can not only enhance electric conductivity and alleviate the volume effect of SiOx effectively, but also mitigate the electrolyte decomposition with improved coulombic efficiency. As a result, an extremely high capacity of 1012 mA h g-1, long lifespan over 500 cycles at a current density of 2 A g-1 as well as a good performance in full LIBs with a working potential of about 3.4 V (vs. nickel-rich cathode) were obtained. The rationally constructed SiOx@CNTs with easy synthesis and high throughput will hopefully promote LIBs with energy density above 300 W h kg-1. This study opens a new avenue to prepare CNT-decorated functional materials and brings the SiOx-based anode one step closer to practical applications.

9.
Nanoscale ; 12(25): 13442-13449, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32614003

RESUMO

Silica is a very promising anode material for lithium-ion batteries, due to its advantages of being resource-rich and having high theoretical specific capacity. However, poor electrochemical activity severely limits its practical application. To solve this issue, a nanosheet-assembled silica hierarchical hollow sphere decorated with ultrafine cobalt nanoparticles and carbon (SiO2/Co/C) is successfully synthesized. The hollow structure can effectively alleviate the volume expansion, shorten the migration distance of lithium ions, and increase the binding site. Furthermore, the carbon matrix and highly active ultrafine cobalt nanoparticles enhance not only the electronic conductivity but also the electrochemical activity (catalyzing the breaking of Si-O and Li-O bonds) of SiO2. The resulting SiO2/Co/C composite has a high reversible capacity of 1160 mA h g-1 at 0.2 A g-1 and still has a specific capacity of 548 mA h g-1 after 1000 cycles at a high current density of 1.0 A g-1. Moreover, the SiO2/Co/C composite also exhibits good electrochemical performance in a full cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA