Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 413(16): 4277-4287, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34057556

RESUMO

A novel smartphone-based electrochemical cell sensor was developed to evaluate the toxicity of heavy metal ions, such as cadmium (Cd2+), lead (Pb2+), and mercury (Hg2+) ions on Hep G2 cells. The cell sensor was fabricated with reduced graphene oxide (RGO)/molybdenum sulfide (MoS2) composites to greatly improve the biological adaptability and amplify the electrochemical signals. Differential pulse voltammetry (DPV) was employed to measure the electrical signals induced by the toxicity of heavy metal ions. The results showed that Cd2+, Hg2+, and Pb2+ significantly reduced the viability of Hep G2 cells in a dose-dependent manner. The IC50 values obtained by this method were 49.83, 36.94, and 733.90 µM, respectively. A synergistic effect was observed between Cd2+ and Pb2+ and between Hg2+ and Pb2+, and an antagonistic effect was observed between Cd2+ and Hg2+, and an antagonistic effect at low doses and an additive effect at high doses were found in the ternary mixtures of Cd2+, Hg2+, and Pb2+. These electrochemical results were confirmed via MTT assay, SEM and TEM observation, and flow cytometry. Therefore, this new electrochemical cell sensor provided a more convenient, sensitive, and flexible toxicity assessment strategy than traditional cytotoxicity assessment methods.


Assuntos
Técnicas Biossensoriais/instrumentação , Cádmio/toxicidade , Chumbo/toxicidade , Mercúrio/toxicidade , Oryza/efeitos dos fármacos , Cádmio/análise , Sobrevivência Celular/efeitos dos fármacos , Técnicas Eletroquímicas/instrumentação , Células Hep G2 , Humanos , Chumbo/análise , Mercúrio/análise , Oryza/citologia , Smartphone , Testes de Toxicidade/instrumentação
2.
Adv Mater ; : e2305917, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37639636

RESUMO

The rise of flexible and stretchable electronics has revolutionized biosensor techniques for probing biological systems. Particularly, flexible and stretchable electrochemical sensors (FSECSs) enable the in situ quantification of numerous biochemical molecules in different biological entities owing to their exceptional sensitivity, fast response, and easy miniaturization. Over the past decade, the fabrication and application of FSECSs have significantly progressed. This review highlights key developments in electrode fabrication and FSECSs functionalization. It delves into the electrochemical sensing of various biomarkers, including metabolites, electrolytes, signaling molecules, and neurotransmitters from biological systems, encompassing the outer epidermis, tissues/organs in vitro and in vivo, and living cells. Finally, considering electrode preparation and biological applications, current challenges and future opportunities for FSECSs are discussed.

3.
Bioelectrochemistry ; 142: 107919, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34371348

RESUMO

A biomimetic "intestinal microvillus" electrochemical cell sensor based on three-dimensional (3D) bioprinting was developed, which can specifically and accurately detect wheat gliadin. Self-assembled flower-like copper oxide nanoparticles (FCONp) and hydrazide-functionalized multiwalled carbon nanotubes (MWCNT-CDH) were innovatively synthesized to improve the sensor performance. A conductive biocomposite hydrogel (bioink) was prepared by mixing FCONp and MWCNT-CDH based on GelMA gel. The cluster-shaped microvillus structure of small intestine was accurately printed on the screen printing electrode with the prepared bioink using stereolithography 3D-bioprinting technology, and then the Rat Basophilic Leukemia cells were immobilized on the gel skeleton. Next, the developed cell sensor was used to effectively detect wheat allergen gliadin. The experimental results show that the bioprinted cell sensor sensitively detects wheat gliadin when the optimized cell numbers and immobilized time are 1 × 106 cells/mL and 10 min, respectively. The linear detection range is 0.1-0.8 ng/mL, and the detection limit is 0.036 ng/mL. The electrochemical cell sensor based on 3D printing technology has excellent stability and reproducibility. Thus, a simple and novel electrochemical detection approach for food allergens was established in this study with potential application in food safety detection and evaluation.


Assuntos
Alérgenos/análise , Biomimética/métodos , Técnicas Eletroquímicas/métodos , Gliadina/análise , Animais , Linhagem Celular , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA