Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(4): 043001, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939022

RESUMO

Generation and manipulation of coherent acoustic phonons enables ultrafast control of solids and has been exploited for applications in various acoustic devices. We show that localized coherent acoustic phonon wave packets can be launched by ultrafast Coulomb forces in a scanning tunneling microscope (STM) using tip-enhanced terahertz electric fields. The wave packets propagate at the speed of the longitudinal acoustic phonon, creating standing waves up to 0.26 THz for a 6.4 nm thin Au film on mica. The ultrafast lattice displacement can be as large as 5 pm and is precisely controlled by varying the tip-sample distance. This nonthermal femtosecond Coulomb-force-based excitation mechanism is applicable in nano-optomechanics for advanced terahertz engineering and opens new perspectives in exploiting coherent phonons at the atomic scale.

2.
J Chem Phys ; 156(20): 204301, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649828

RESUMO

The adsorption and self-assembly structures of melamine molecules on an Ag(111) surface are studied by low temperature scanning tunneling microscopy (STM) combined with tip-enhanced Raman spectroscopy (TERS). Two ordered self-assembly phases of melamine molecules on Ag(111) were studied by STM and TERS, combining with first-principles simulations. The α-phase consists of flat-lying melamine molecules, while the ß-phase consists of mixed up-standing/tilted melamine molecules. Moreover, dehydrogenation of melamine can be controlled by annealing the sample as well as by a tip-enhanced photo-catalytic effect. Our work demonstrates TERS as a powerful tool not only for investigating the configuration and vibration properties of molecules on a metal surface with high spatial resolution but also for manipulating the chemical reactions with tip and photo-induced effects.

3.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164100

RESUMO

We report a Raman characterization of the α borophene polymorph by scanning tunneling microscopy combined with tip-enhanced Raman spectroscopy. A series of Raman peaks were discovered, which can be well related with the phonon modes calculated based on an asymmetric buckled α structure. The unusual enhancement of high-frequency Raman peaks in TERS spectra of α borophene is found and associated with its unique buckling when landed on the Ag(111) surface. Our paper demonstrates the advantages of TERS, namely high spatial resolution and selective enhancement rule, in studying the local vibrational properties of materials in nanoscale.

4.
Nano Lett ; 18(5): 2937-2942, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29601201

RESUMO

The atomic structures of self-assembled silicon nanoribbons and magic clusters on Ag(110) substrate have been studied by high-resolution noncontact atomic force microscopy (nc-AFM) and tip-enhanced Raman spectroscopy (TERS). Pentagon-ring structures in Si nanoribbons and clusters have been directly visualized. Moreover, the vibrational fingerprints of individual Si nanoribbon and cluster retrieved by subnanometer resolution TERS confirm the pentagonal nature of both Si nanoribbons and clusters. This work demonstrates that Si pentagon can be an important element in building silicon nanostructures, which may find important applications for future nanoelectronic devices based on silicon.

5.
Phys Chem Chem Phys ; 20(30): 20188-20193, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30027957

RESUMO

Two-dimensional surface structures often host a surface state in the bulk gap, which plays a crucial role in the surface electron transport. The diversity of in-gap surface states extends the category of two-dimensional systems and gives us more choices in material applications. In this article, we investigated the surface states of ß-√3 × âˆš3-Bi/Si(111) surface by scanning tunneling microscopy. Two nearly free electron states in the bulk gap of silicon were found in the unoccupied states. Combined with first-principles calculations, these two states were verified to be the Bi-contributed surface states and electron-accumulation-induced quantum well states. Due to the spin-orbit coupling of Bi atoms, Bi-contributed surface states exhibit free-electron Rashba splitting. The in-gap surface states with spin splitting can possibly be used for spin polarized electronics applications.

6.
Phys Rev Lett ; 119(19): 196803, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219519

RESUMO

Combining ultrahigh sensitivity, spatial resolution, and the capability to resolve chemical information, tip-enhanced Raman spectroscopy (TERS) is a powerful tool to study molecules or nanoscale objects. Here we show that TERS can also be a powerful tool in studying two-dimensional materials. We have achieved a 10^{9} Raman signal enhancement and a 0.5 nm spatial resolution using monolayer silicene on Ag(111) as a prototypical 2D material system. Because of the selective enhancement on Raman modes with vertical vibrational components in TERS, our experiment provides direct evidence of the origination of Raman modes in silicene. Furthermore, the ultrahigh sensitivity of TERS allows us to identify different vibrational properties of silicene phases, which differ only in the bucking direction of the Si-Si bonds. Local vibrational features from defects and domain boundaries in silicene can also be identified.

7.
Anal Chem ; 88(19): 9328-9346, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27571253

RESUMO

Tip-enhanced Raman spectroscopy (TERS), a combination of Raman spectroscopy and apertureless near-field scanning optical microscopy using a metallic tip which resonates with the local mode of the surface plasmon, can provide a high-sensitive and high-spatial-resolution optical analytical approach. The basic principle of TERS, common experimental setups, various SPM technologies, and excitation/collection configurations are introduced as well as recent research progress with respect to TERS.

8.
ACS Photonics ; 8(3): 702-708, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33763504

RESUMO

Broadband THz pulses enable ultrafast electronic transport experiments on the nanoscale by coupling THz electric fields into the devices with antennas, asperities, or scanning probe tips. Here, we design a versatile THz source optimized for driving the highly resistive tunnel junction of a scanning tunneling microscope. The source uses optical rectification in lithium niobate to generate arbitrary THz pulse trains with freely adjustable repetition rates between 0.5 and 41 MHz. These induce subpicosecond voltage transients in the tunnel junction with peak amplitudes between 0.1 and 12 V, achieving a conversion efficiency of 0.4 V/(kV/cm) from far-field THz peak electric field strength to peak junction voltage in the STM. Tunnel currents in the quantum limit of less than one electron per THz pulse are readily detected at multi-MHz repetition rates. The ability to tune between high pulse energy and high signal fidelity makes this THz source design effective for exploration of ultrafast and atomic-scale electron dynamics.

9.
ACS Nano ; 13(4): 4133-4139, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30913391

RESUMO

The successful fabrication of a two-dimensional boron sheet, which features a triangular lattice with periodic hole arrays, has stimulated great interest in its specific structure as well as properties such as possible superconductivity. Here, we report a study on the vibrational spectra and electron-phonon coupling (EPC) in monolayer boron sheets by in situ Raman and tip-enhanced Raman spectroscopy (TERS) at low temperature and ultrahigh vacuum. The gap-mode TERS gives a 3 × 109 selective enhancement on vertical vibrational Raman modes. A spatial resolution of 1 nm is achieved in this system. Combined with first-principle calculations, the vibrational properties as well as EPC in borophene are determined. The results are helpful for further study on the mechanical, electronic, and possible superconducting properties of two-dimensional boron.

10.
Rev Sci Instrum ; 89(5): 053107, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864859

RESUMO

Tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with the Raman spectroscopy, is capable to access the local structure and chemical information simultaneously. However, the application of ambient TERS is limited by the unstable and poorly controllable experimental conditions. Here, we designed a high performance TERS system based on a low-temperature ultrahigh-vacuum scanning tunneling microscope (LT-UHV-STM) and combined with a molecular beam epitaxy (MBE) system. It can be used for growing two-dimensional (2D) materials and for in situ STM and TERS characterization. Using a 2D silicene sheet on the Ag(111) surface as a model system, we achieved an unprecedented 109 Raman single enhancement factor in combination with a TERS spatial resolution down to 0.5 nm. The results show that TERS combined with a MBE system can be a powerful tool to study low dimensional materials and surface science.

11.
Sci Bull (Beijing) ; 63(5): 282-286, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36658797

RESUMO

We report the successful preparation of a purely honeycomb, graphene-like borophene, by using an Al(1 1 1) surface as the substrate and molecular beam epitaxy (MBE) growth in ultrahigh vacuum. Scanning tunneling microscopy (STM) images reveal perfect monolayer borophene with planar, non-buckled honeycomb lattice similar as graphene. Theoretical calculations show that the honeycomb borophene on Al(1 1 1) is energetically stable. Remarkably, nearly one electron charge is transferred to each boron atom from the Al(1 1 1) substrate and stabilizes the honeycomb borophene structure, in contrast to the negligible charge transfer in case of borophene/Ag(1 1 1). The existence of honeycomb 2D allotrope is important to the basic understanding of boron chemistry, and it also provides an ideal platform for fabricating boron-based materials with intriguing electronic properties such as Dirac states.

12.
J Phys Condens Matter ; 29(9): 095002, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28129209

RESUMO

Two reproducible new phases of 2D boron sheets have been found on Ag(1 1 1). One of them shares the identical atomic structure of the previously reported S1 phase (ß 12 sheet) but has a different rotational relationship with the substrate, and thus exhibits very different features in scanning tunneling microscopy (STM) images. The other new phase has a hexagonal symmetry and is proposed to be the long-expected α-sheet. Both of these two boron sheets are confirmed to be metallic by scanning tunneling spectroscopy.

13.
J Colloid Interface Sci ; 415: 165-8, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24267344

RESUMO

Vibration mode-resolved plasmon enhanced Raman optical activities (PE-ROA) are investigated experimentally and theoretically. It is found that the profile of PE-ROA is significantly different from that of ROA. Our experimental results revealed that PE-ROA is not a universal method for the enhancement of ROA. It should be very carefully for the using of plasmon enhancement for ROA.


Assuntos
Alanina/química , Análise Espectral Raman/métodos , Modelos Moleculares , Rotação Ocular , Soluções , Eletricidade Estática , Estereoisomerismo , Ressonância de Plasmônio de Superfície , Vibração
14.
Artigo em Inglês | MEDLINE | ID: mdl-24287052

RESUMO

In this paper, the S-complex of pyrimidine molecule absorbed on silver clusters was employed as a model molecule to study the enhancement mechanism in surface-enhanced resonance Raman scattering (SERRS). We described the chemical enhancement of SERRS through charge transfer (CT) from Ag20 to pyrimidine on resonance excitation, and electromagnetic enhancement through intracluster charge redistribution (CR) on the electronic intracluster collective oscillation excitation. It is shown that SERRS process of the pyrimidine molecule absorbed on silver clusters with different incident wavelength are dominated by different enhancement mechanisms. Both experimental and theoretical works have been performed to understand the CT process in SERRS.


Assuntos
Nanopartículas Metálicas/química , Pirimidinas/química , Prata/química , Análise Espectral Raman , Adsorção , Eletrodos , Elétrons , Modelos Moleculares , Propriedades de Superfície
15.
Nanoscale ; 6(9): 4903-8, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24671142

RESUMO

The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis, photosynthesis and the degradation of plastic, it is hard to break individual molecular bonds for those molecules adsorbed on the surface because of the weak light-absorption in molecules and the redistribution of the resulting vibrational energy both inside the molecule and to its surrounding environment. Here we show how to overcome these obstacles with a plasmonic hot-electron mediated process and demonstrate a new method that allows the sensitive control of resonant dissociation of surface-adsorbed molecules by 'plasmonic' scissors. To that end, we used a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup to dissociate resonantly excited NC2H6 fragments from Malachite green. The surface plasmons (SPs) excited at the sharp metal tip not only enhance the local electric field to harvest the light incident from the laser, but crucially supply 'hot electrons' whose energy can be transferred to individual bonds. These processes are resonant Raman, which result in some active chemical bonds and then weaken these bonds, followed by dumping in lots of indiscriminant energy and breaking the weakest bond. The method allows for sensitive control of both the rate and probability of dissociation through their dependence on the density of hot electrons, which can be manipulated by tuning the laser intensity or tunneling current/bias voltage in the HV-TERS setup, respectively. The concepts of plasmonic scissors open up new versatile avenues for the deep understanding of in situ surface-catalyzed chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA