Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutr Rev ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348276

RESUMO

Metabolic syndrome (MetS) is recognized as a group of metabolic abnormalities, characterized by clustered interconnected traits that elevate the risks of obesity, cardiovascular and atherosclerotic diseases, hyperlipidemia, and type 2 diabetes mellitus. Non-nutritive sweeteners (NNS) are commonly consumed by those with imbalanced calorie intake, especially in the perinatal period. In the past, accumulating evidence showed the transgenerational and mediated roles of human microbiota in the development of early-life MetS. Maternal exposure to NNS has been recognized as a risk factor for filial metabolic disturbance through various mechanisms, among which gut microbiota and derived metabolites function as nodes linking NNS and MetS in early life. Despite the widespread consumption of NNS, there remain growing concerns about their transgenerational impact on metabolic health. There is growing evidence of NNS being implicated in the development of metabolic abnormalities. Intricate complexities exist and a comprehensive understanding of how the gut microbiota interacts with mechanisms related to maternal NNS intake and disrupts metabolic homeostasis of offspring is critical to realize its full potential in preventing early-life MetS. This review aims to elucidate the effects of early-life gut microbiota and links to maternal NNS exposure and imbalanced offspring metabolic homeostasis and discusses potential perspectives and challenges, which may provide enlightenment and understanding into optimal perinatal nutritional management.

2.
Aging (Albany NY) ; 16(8): 7487-7504, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38683118

RESUMO

Metabolomics is a rapidly expanding field in systems biology used to measure alterations of metabolites and identify metabolic biomarkers in response to disease processes. The discovery of metabolic biomarkers can improve early diagnosis, prognostic prediction, and therapeutic intervention for cancers. However, there are currently no databases that provide a comprehensive evaluation of the relationship between metabolites and cancer processes. In this review, we summarize reported metabolites in body fluids across pan-cancers and characterize their clinical applications in liquid biopsy. We conducted a search for metabolic biomarkers using the keywords ("metabolomics" OR "metabolite") AND "cancer" in PubMed. Of the 22,254 articles retrieved, 792 were deemed potentially relevant for further review. Ultimately, we included data from 573,300 samples and 17,083 metabolic biomarkers. We collected information on cancer types, sample size, the human metabolome database (HMDB) ID, metabolic pathway, area under the curve (AUC), sensitivity and specificity of metabolites, sample source, detection method, and clinical features were collected. Finally, we developed a user-friendly online database, the Human Cancer Metabolic Markers Database (HCMMD), which allows users to query, browse, and download metabolite information. In conclusion, HCMMD provides an important resource to assist researchers in reviewing metabolic biomarkers for diagnosis and progression of cancers.


Assuntos
Biomarcadores Tumorais , Líquidos Corporais , Metabolômica , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/diagnóstico , Biomarcadores Tumorais/metabolismo , Biópsia Líquida/métodos , Metabolômica/métodos , Líquidos Corporais/metabolismo , Bases de Dados Factuais , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA