Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
Cell Tissue Res ; 396(1): 1-18, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38416172

RESUMO

Imaging technologies have played a pivotal role in advancing biological research by enabling visualization of biological structures and processes. While traditional electron microscopy (EM) produces two-dimensional images, emerging techniques now allow high-resolution three-dimensional (3D) characterization of specimens in situ, meeting growing needs in molecular and cellular biology. Combining transmission electron microscopy (TEM) with serial sectioning inaugurated 3D imaging, attracting biologists seeking to explore cell ultrastructure and driving advancement of 3D EM reconstruction. By comprehensively and precisely rendering internal structure and distribution, 3D TEM reconstruction provides unparalleled ultrastructural insights into cells and molecules, holding tremendous value for elucidating structure-function relationships and broadly propelling structural biology. Here, we first introduce the principle of 3D reconstruction of cells and tissues by classical approaches in TEM and then discuss modern technologies utilizing TEM and on new SEM-based as well as cryo-electron microscope (cryo-EM) techniques. 3D reconstruction techniques from serial sections, electron tomography (ET), and the recent single-particle analysis (SPA) are examined; the focused ion beam scanning electron microscopy (FIB-SEM), the serial block-face scanning electron microscopy (SBF-SEM), and automatic tape-collecting lathe ultramicrotome (ATUM-SEM) for 3D reconstruction of large volumes are discussed. Finally, we review the challenges and development prospects of these technologies in life science. It aims to provide an informative reference for biological researchers.


Assuntos
Imageamento Tridimensional , Microtomia , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microtomia/métodos , Microscopia Crioeletrônica
2.
Arch Insect Biochem Physiol ; 115(3): e22096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500448

RESUMO

The microbial community structure plays an important role in the internal environment of brown planthopper (BPH), Nilaparvata lugens (Hemiptera: Delphacidae), which is an indispensable part to reflect the internal environment of BPH. Wing dimorphism is a strategy for balancing flight and reproduction of insects. Here, quantitative fluorescence PCR was used to analyse the number and changes of the symbionts in the fat body of long- and short-winged BPHs at different developmental stages. A metagenomic library was constructed based on the 16 S rRNA sequence and internal transcribed spacer sequence for high-throughput sequencing, to analyze the community structure and population number of the symbionts of long- and short-winged BPHs, and to make functional prediction. This study enriches the connotation of BPH symbionts, and laid a theoretical foundation for the subsequent study of BPH-symbionts interaction and the function of symbionts in the host.


Assuntos
Corpo Adiposo , Hemípteros , Animais , Hemípteros/genética
3.
Pestic Biochem Physiol ; 202: 105973, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879316

RESUMO

Using a high-efficiency insecticide in combination with fungicides that have different mechanisms of action is a conventional method in the current management of brown planthopper (BPH) resistance. In this study, we investigate the separate and combined effects of the low-toxicity fungicide validamycin and the non-cross-resistant insecticide imidacloprid on the fitness and symbiosis of BPH. These research results indicate that when the proportion of active ingredients in validamycin is combined with imidacloprid at a ratio of 1:30, the toxicity ratio and co-toxicity coefficient are 1.34 and 691.73, respectively, suggesting that the combination has a synergistic effect on the control of BPH. The number of yeast-like symbiotic (YLS) and dominant symbiotic (Noda) in the imidacloprid + validamycin groups were significantly lower than the other three treatment groups (validamycin, imidacloprid, and water). The results of the study on population fitness show that the lifespan of the BPH population in validamycin, imidacloprid, and imidacloprid + validamycin was shortened. Notably, the BPH populations in the imidacloprid + validamycin groups were significantly lower than other groups in terms of average generation cycle, intrinsic growth rate, net reproduction rate, finite rate of increase, and fitness. The Real-time quantitative PCR showed that validamycin and imidacloprid + validamycin can significantly inhibit the expression of the farnesyl diphosphate farnesyl transferase gene (EC2.5.1.21) and uricase gene (EC1.7.3.3), with imidacloprid + validamycin demonstrating the most pronounced inhibitory effect. Our research results can provide insights and approaches for delaying resistance and integrated management of BPH.


Assuntos
Hemípteros , Inseticidas , Neonicotinoides , Nitrocompostos , Simbiose , Animais , Hemípteros/efeitos dos fármacos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Inseticidas/farmacologia , Inositol/análogos & derivados , Inositol/farmacologia , Imidazóis/farmacologia , Fungicidas Industriais/farmacologia
4.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612686

RESUMO

Bis (3',5')-cyclic diguanylic acid (c-di-GMP) is a ubiquitous second messenger that controls several metabolic pathways in bacteria. In Streptomyces, c-di-GMP is associated with morphological differentiation, which is related to secondary metabolite production. In this study, we identified and characterized a diguanylate cyclase (DGC), CdgB, from Streptomyces diastatochromogenes 1628, which may be involved in c-di-GMP synthesis, through genetic and biochemical analyses. To further investigate the role of CdgB, the cdgB-deleted mutant strain Δ-cdgB and the cdgB-overexpressing mutant strain O-cdgB were constructed by genetic engineering. A phenotypic analysis revealed that the O-cdgB colonies exhibited reduced mycelium formation, whereas the Δ-cdgB colonies displayed wrinkled surfaces and shriveled mycelia. Notably, O-cdgB demonstrated a significant increase in the toyocamycin (TM) yield by 47.3%, from 253 to 374 mg/L, within 10 days. This increase was accompanied by a 6.7% elevation in the intracellular concentration of c-di-GMP and a higher transcriptional level of the toy cluster within four days. Conversely, Δ-cdgB showed a lower c-di-GMP concentration (reduced by 6.2%) in vivo and a reduced toyocamycin production (decreased by 28.9%, from 253 to 180 mg/L) after 10 days. In addition, S. diastatochromogenes 1628 exhibited a slightly higher inhibitory effect against Fusarium oxysporum f. sp. cucumerinum and Rhizoctonia solani compared to Δ-cdgB, but a lower inhibition rate than that of O-cdgB. The results imply that CdgB provides a foundational function for metabolism and the activation of secondary metabolism in S. diastatochromogenes 1628.


Assuntos
Streptomyces , Toiocamicina , Sistemas do Segundo Mensageiro , Engenharia Genética , Streptomyces/genética
5.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446249

RESUMO

The brown planthopper Nilaparvata lugens (Stål) (BPH) is a typical monophagous sucking rice pest. Over the course of their evolution, BPH and its symbionts have established an interdependent and mutually beneficial relationship, with the symbionts being important to the growth, development, reproduction, and variation in virulence of BPH. Yeast-like symbionts (YLS), harbored in the abdomen fat body cells of BPH, are vital to the growth and reproduction of the host. In recent research, the symbionts in BPH have mainly been detected using blood cell counting, PCR, real-time quantitative PCR, and other methods. These methods are vulnerable to external interference, cumbersome, time consuming and laborious. Droplet digital PCR (ddPCR) does not need a standard curve, can achieve absolute quantification, does not rely on Cq values, and is more useful for analyzing copy number variation, gene mutations, and relative gene expression. A rapid detection method for the YLS of BPH based on ddPCR was established and optimized in this study. The results showed that the method's limits of detection for the two species of YLS (Ascomycetes symbionts and Pichia guilliermondii) were 1.3 copies/µL and 1.2 copies/µL, respectively. The coefficient of variation of the sample repetition was less than 5%; therefore, the ddPCR method established in this study had good sensitivity, specificity, and repeatability. It can be used to detect the YLS of BPH rapidly and accurately.


Assuntos
Ascomicetos , Hemípteros , Oryza , Animais , Ascomicetos/genética , Variações do Número de Cópias de DNA , Hemípteros/genética , Oryza/genética , Reação em Cadeia da Polimerase em Tempo Real
6.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203556

RESUMO

The brown planthopper Nilaparvata lugens (Stål) (BPH) is a main rice pest in China and many other Asian countries. In the control of BPH, the application of insect-resistant rice has proven to be quite effective. Secondary metabolites are essential weapons in plants' defense against phytophagous insects. Studies have found that differences in the content of secondary metabolites play a crucial role in determining whether rice exhibits resistance or susceptibility to BPH. Simultaneously, symbionts are essential to the BPH. Nevertheless, there is limited research on the impact of secondary metabolites on the symbionts within BPH. Therefore, investigating the influence of secondary metabolites on both BPH and their symbionts is significant for the control of BPH. In this experiment, newly emerged female adults of BPH were fed artificial diets containing 10 different secondary metabolites. The results indicated that methyl jasmonate had inhibitory effects on the survival rate, weight gain, and reproductive capacity of BPH. Using qPCR methods, it was discovered that the number of symbiotic fungi (Ascomycetes symbionts) within BPH significantly decreased under methyl jasmonate stress. In conclusion, this experiment has preliminarily revealed the inhibitory effects of methyl jasmonate on BPH and its symbionts, demonstrating its potential for controlling BPH.


Assuntos
Acetatos , Insetos , Oryza , China , Ciclopentanos , Insetos/microbiologia , Oryza/química , Oxilipinas , Animais
7.
Anal Chem ; 94(48): 16778-16786, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36398922

RESUMO

Pursuing convenient operations and precise testing have become an urgent requirement in clinical diagnosis, treatment, and prognosis. Label-free detection is desirable for obviating the labeling process while maintaining high sensitivity and efficiency. Here, we used the dual properties of highly selective antibody-antigen recognition and potential signaling of biomolecules to construct a label-free electroosmotic flow-driven microchannel (LF-EMB) biosensor based on an antibody-antigen biorecognition-induced charge quenching theory proposed herein. The LF-EMB consists of a one-step immune-reaction, one-button portable device, and supporting microfluidic chip, providing a high-powered tool for rapid on-site testing. The LF-EMB quantified interleukin-6 and kanamycin levels down to 1 pg/mL and 5 pg/mL, respectively, with the whole analysis completed within 35 min. The outstanding sensitivity and detection speed of the constructed LF-EMB provide a convenient option for the quantitative detection of inflammatory markers and antibiotics.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Anticorpos , Microfluídica , Biomarcadores , Limite de Detecção
8.
Anal Bioanal Chem ; 414(14): 4235-4244, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35449469

RESUMO

Chemical sensing for the sensitive and reliable detection of mercury(II) ions (Hg2+) is of great importance in environmental protection, food safety, and biomedical applications. Due to the bio-enrichment property of Hg2+ in organisms, it is particularly meaningful to develop an effective tool that can in situ and rapidly monitor the level of Hg2+ in living organisms. In this work, we report ligand functionalized gold-silver bimetallic nanoclusters with bright red fluorescence as intracellular probes for imaging Hg2+ in living cells and zebrafish. The bimetallic nanoclusters of DTT-GSH@Au/AgNCs (DG-Au/AgNCs) with strong fluorescence that benefited from the synergistic effect of Au and Ag atoms were obtained through a one-pot synthesis method, incorporating glutathione (GSH) and dithiothreitol (DTT) as the reducers and functionalized ligands. Attractively, the bright red fluorescence of DG-Au/AgNCs could be rapidly and selectively quenched by Hg2+ within 1 min with a very low detection limit of 1.01 nM. Additionally, DG-Au/AgNCs had a great advantage in the detection of Hg2+ in living cells and zebrafish owing to its notably strong red fluorescence at 665 nm, which could avoid effectively auto-fluorescence interference from the organism. Such easily prepared bimetallic fluorescent nanoclusters would be expected to provide a noninvasive and sensitive approach in the detection of heavy metals in situ for environmental protection.


Assuntos
Mercúrio , Nanopartículas Metálicas , Animais , Glutationa , Ouro/química , Íons/química , Nanopartículas Metálicas/química , Prata/química , Espectrometria de Fluorescência/métodos , Peixe-Zebra
9.
Pestic Biochem Physiol ; 174: 104806, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33838707

RESUMO

The symbionts in the gut of brown planthopper play an important role in the nutrition utilization and growth of their host, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Controlling the BPH infection on rice by inhibiting the symbionts using antimicrobials is feasible. However, the impact of antimicrobials on the microbiome in the gut has not been fully elucidated. In this study, we found the mortality reached 35.5%, 33.1% and 19.4%, when BPHs were exposed to toyocamycin, tebuconazole, and zhongshengmycin, respectively. Significant differences were found between the structures of gut microbial communities in adult BPHs treated with different antimicrobials and water. The antimicrobials reduced the fungal diversity by reducing the non-dominant fungi abundance, and increased bacterial diversity by inhibiting the dominant bacteria Acinetobacter in the gut. The diversification of taxonomic groups in gut depended on the different selective stress of antimicrobials. For the microbial absolute abundance, the total microbial gut community abundance decreased under antimicrobial exposure, but the absolute abundance of Serratia significantly increased in the antimicrobial treatment group. Overall, our study enriched the knowledge of microbiomes in the gut of BPH under the antimicrobial treatment and provided guidelines to enhance the pest management effect of BPH by using antimicrobials.


Assuntos
Anti-Infecciosos , Microbioma Gastrointestinal , Hemípteros , Oryza , Animais , Bactérias
10.
Plant Dis ; 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33591829

RESUMO

Dendrobium officinale Kimura et Migo is a rare and valuable Chinese herb cultivated in Zhejiang and Yunnan Provinces, China, which is known for its functions as an anti-neoplastic and for lowering the blood sugar (Cheng et al., 2019). In September and October of 2018 and 2019, symptoms of root rot on D. officinale were observed with an incidence of 15-20% in Wuyi County, Zhejiang Province, China. The pathogen mainly infected roots causing severe root rot, which resulted in significant economic losses. At the early stage of this disease, the stalk turned brown, then the whole plant rotted from bottom to top within a few days. Symptomatic roots were cut into small pieces (1.0 cm × 1.0 cm) and disinfected successively by submersion in 75% ethanol for 30 s and 1% NaClO for 30 s under aseptic conditions. After rinsing with sterile water three times and air drying, segments were placed on potato dextrose agar (PDA). After incubation at 25 °C for 5 d in the dark, white to pale cream colored colonies were produced. The average mycelial growth rate was 15.2-18.5 mm day-1 at 25 ℃. Macroconidia were falciform with three to five septa and (18.0-32.0)×(3.0-5.0) µm in size. Microconidia were fusiform with two to three septa (7.0-10.0)×(2.1-3.0) µm. Based on morphological characteristics of macroconidia, and microconidia, isolates were identified as Fusarium incarnatum-equiseti species complex (span style="font-family:'Times New Roman'; font-size:12pt">FIESC) (Avila et al., 2019). The internal transcribed spacer (ITS) region, translation elongation factor (EF-1α), RNA polymerase largest subunit (RPB1), and RNA polymerase second largest subunit (RPB2) gene were amplified and sequenced respectively using ITS1/ITS4, EF1/EF2, Fa/G2R and 5f2/7cr primers (O'Donnell et al., 2010). BLASTN analysis of FUSARIUM-ID using ITS (Accession NO. MW172977), EF-1α (Accession NO. MW172978, RPB1(Accession NO. MW172979), and RPB2(Accession NO. MW172980) showed 99.8%, 100%, 99.74%, and 98.63% identity to FIESC isolates NRRL43619, NRRL34059, NRRL32864, and NRRL32175, respectively. To verify pathogenicity, ten 1-year-old healthy D. officinale plants were used for inoculation tests. One milliliter of a conidial suspension (106 conidia ml-1) was pipetted onto the soil around the base of D. officinale plants per pot. Ten plants, which were treated with sterile water, were used as the control. All plants were maintained in a climatic chamber (26 ± 1 ℃, 70-80% relative humidity and a photoperiod of 16:8 [L: D] h). Seven days later, all inoculated plants showed typical symptoms of root rot identical to those observed in the fields. Control plants remained symptomless and healthy. The pathogenicity analysis was repeated three times. Pathogens re-isolated from symptomatic plants were identified as FIESC species by morphology observation and sequence analysis. To our knowledge, this is the first report of root rot caused by FIESC species on D. officinale in Zhejiang, China.

11.
Plant Dis ; 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34309405

RESUMO

Ophiopogon japonicus (Linn. f.) Ker-Gawl, a traditional Chinese medicinal plant, is widely cultured in China. The root of O. japonicus, is used as the main ingredient in many presriptions. It is rich in chemical components for steroidal saponins, homoisoflavonoids and polysaccharides, which have various pharmacological activities, such as cardiovascular protection, anti-inflammation and anti-diabetes (Chen. et al. 2016). In May and July for 2018 and 2019, the symptoms of black spot on O. japonicus were observed with an incidence of 40% in Cixi County, Zhejiang Province, China. The pathogen mainly infected leaves causing severe black spots, which resulted in a 28% yield loss per acre. At the early stage of the disease, the tip of the leaf began to turn yellow, then the discoloration gradually spread to the base of the leaf and finally the whole leaf turned reddish brown with visible black spot. Symptomatic leaves were cut into small pieces (1.0 cm × 1.0 cm) and disinfected successively by submersion in 75% ethanol for 30s and 1% NaClO for 30s under aseptic conditions. After rinsing with sterile water three times and air drying, segments were placed on potato dextrose agar (PDA), and incubated at 28 ℃ in dark for a week. Then, pathogen on the PDA were transferred onto potato carrot agar (PCA), and incubated at 23 ℃ under the condition of alternation of day (12 h) and night (12 h) for a week. Colonies on PDA were dark gray in the center surrounded by white to gray on the upper side, and black with white margins on the back of the plate. Colonies on PCA were grayish with sparse hyphae. The conidia were obclavate or ellipsoid, pale brown, with 3~8 transverse septa and 1~4 longitudinal septa. Conidiophores were septate, arising singly, and measured (17.0~81.0) × (8.0~23.5) µm, Most conidia had a conical or columnar beak, approximately (0~23.5) × (2.5~9.0) µm in size. According to morphological and cultural characteristics, these isolates were preliminarily identified as Alternaria alternata. A. alternata is one of the most typical plant pathogen, more than 95% of which facultatively parasitize on plants, causing disease in numerous crops. To further confirm identification of pathogens, the internal transcribed spacer region (ITS), translation elongation factor 1-α gene (EF-1α), RNA polymerase Ⅱ second largest subunit (RPB2), major allergen Alt a 1 gene (Alt a 1), Histon 3 gene (His) and plasma membrane ATPase (ATP)were amplified with primer pairs ITS1/ITS4, EF1-728F/EF1-986R, RPB2-7cr/RPB2-5f2, Alt-for/Alt-rev, His 3-F/His 3-R, ATP-F/ATP-R (Lawrence D.P. et al. 2013; Hong, S.G., et al. 2005). BLASTN analysis of NCBI using ITS (Accession NO. MW989987), Alt a1 (Accession NO. MW995953), EF-1α (Accession NO.MW995955), ATP (Accession NO.MW995957), His (Accession NO. MW995954) and RPB2 (Accession NO. MW995956) showed 100%, 100%, 97%, 99%, 99% and 97% identity to A. alternata MN249500.1, MN304714.1, MK637432.1, MK804115.1, MK460236.1, MK605888.1, respectively. To verify pathogenicity, healthy plants (1-year-old) of O. japonicus in ten pots were spray-inoculated with conidial suspension (1 × 106 conidia/ml). Ten plants, which were treated with sterile water, were used as the control. All plants were maintained in a climatic chamber (26 ± 1 ℃, 70-80% relative humidity and a photoperiod of 16:8 [L: D] h). Fourteen days later, all inoculated plants showed typical symptoms of black spot identical to those observed in the fields. Control plants remained symptomless and healthy. The pathogenicity analysis was repeated three times. Pathogens re-isolated from symptomatic plants were identified as A. alternata by morphology observation and sequence analysis. To our knowledge, this is the first report of black spot caused by A. alternata on O. japonicus in Zhejiang, China.

13.
Pestic Biochem Physiol ; 128: 16-21, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26969435

RESUMO

Yeast-like symbiotes (YLS) are endosymbionts that are closely related to the growth, development and reproduction of their host, the brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae). In order to understand the relationship between the population of YLS in BPH cells and the survival rate of BPH, eight different fungicides were applied to rice plants infested by BPH, and the number of YLS and mortality of BPH were determined. Three of the fungicides, 27% toyocamycin & tetramycin P & tetrin B & tetramycin A, 0.01% trichodermin, and 75% trifloxystrobin & tebuconazole WG, were found to significantly reduce the number of YLS in BPH, subsequently causing a high mortality of BPH. The three fungicides were each mixed with a commonly used insecticide-imidacloprid, and the fungicide/insecticide mixtures could cause a marked reduction in YLS number in BPH, resulting in a significantly higher mortality of BPH than did the imidacloprid alone. The mixture of 27% toyocamycin & tetramycin P & tetrin B & tetramycin A with imidacloprid showed the best inhibitory effect on BPH population. Our study demonstrated a high dependence of the BPH survival rate on the number of YLS harbored in BPH fat-body cells. It implies that using specific fungicides as an additive to imidacloprid for controlling BPH could be a novel way to enhance the efficacy of insecticide, minimizing the use of imidacloprid in paddy fields.


Assuntos
Fungicidas Industriais/farmacologia , Hemípteros/efeitos dos fármacos , Simbiose , Animais , Hemípteros/microbiologia
14.
Appl Microbiol Biotechnol ; 98(11): 5051-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24509772

RESUMO

Ribosome recycling factor (RRF), a product of the frr gene, is responsible for the dissociation of ribosomes from messenger RNA after the termination of translation. In order to overexpress frr gene in the toyocamycin (TM) producer Streptomyces diastatochromogenes 1628, we cloned and placed the gene under the control of the constitutive promoter PermE(*). The resulting plasmid pIB139-frr was integrated into the chromosome of S. diastatochromogenes 1628 by conducting intergeneric conjugation. The strain S. diastatochromogenes 1628 containing pIB139-frr (1628-FRR) showed a 33.3 % increase in cell growth and a 46 % increase in TM production compared to wild-type strain 1628 when cultivated in a 7 l fermentor. In addition, it was possible to shorten the fermentation time from 84 to 72 h. Furthermore, by conducting reverse transcription polymerase chain reaction (RT-PCR) analysis, we discovered that the transcriptional levels of regulatory gene adpA-sd, toyF, and toyG involved in TM biosynthesis were enhanced in S. diastatochromogenes 1628-FRR compared to S. diastatochromogenes 1628. In addition, by using a fluorescent intensity reporter system, which is based on the green fluorescent protein (GFP), and by using Western blot analysis, we revealed that overexpression of frr also strongly promoted protein biosynthesis in late growth phase. These findings confirmed that by increasing copy number of frr gene, it is a useful approach to improve antibiotic production.


Assuntos
Antibacterianos/biossíntese , Expressão Gênica , Proteínas Ribossômicas/biossíntese , Proteínas Ribossômicas/genética , Streptomyces/genética , Streptomyces/metabolismo , Toiocamicina/biossíntese , Biotecnologia/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , Fermentação , Dados de Sequência Molecular , Plasmídeos , Análise de Sequência de DNA , Streptomyces/crescimento & desenvolvimento
15.
Curr Microbiol ; 68(2): 180-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24057064

RESUMO

Streptomyces diastatochromogenes 1628, capable of producing toyocamycin (TM), has exhibited a potential biocontrol effect in inhibiting the development of phytopathogens in the agriculture field. In this study, an efficient transformation system was developed using the intergeneric conjugation. This was achieved by optimization of experimental parameters. Under optimal conditions, a maximal conjugation frequency of 4.1 × 10(-4) per recipient was obtained. In order to heterologously express the gene vgb encoding Vitreoscilla hemoglobin in S. diastatochromogenes 1628, we placed vgb under the control of the constitutive promoter PermE(*) and constructed plasmid pIB139-vgb. This plasmid was integrated into the chromosome of S. diastatochromogenes 1628 using intergeneric conjugation established above. Finally, strain 1628-VHB-23 with the highest TM production was screened. Results indicated that expression of vgb gene had always significantly promoted the cell growth and TM production in S. diastatochromogenes 1628 under different dissolved oxygen conditions. In particular, under the limited aerobic condition, strain 1628-VHB-23 obtained 33.3 % more DCW and produced 210 % more TM in 7-l fermentor as compared with the wild-type strain.


Assuntos
Conjugação Genética , Streptomyces/genética , Streptomyces/metabolismo , Toiocamicina/biossíntese , Fermentação , Ordem dos Genes , Plasmídeos/genética
16.
J Basic Microbiol ; 54(4): 278-84, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23775805

RESUMO

Because of its structural similarity to nucleoside, toyocamycin exhibits potential of wide application and various biological activities. Streptomyces diastatochromogenes 1628, capable of producing toyocamycin, has exhibited a potential biocontrol effect in inhibiting the development of phytopathogens in the agriculture field. An efficient transformation system is a prerequisite for genetic and molecular study of S. diastatochromogenes 1628. In this study, we optimized experimental factors involved in the electroporation transformation process. Key features of this procedure, including collection of cells at the mid-log phase stage and the treatment of cells with lysozyme and penicillin G prior to the electroporation and recovery medium and time, produced the greatest increase in the efficiency and consistency of results. The transformation efficiency also depends on field strength, cell concentration, and plasmid DNA quantity. Under the optimal conditions, a maximal efficiency of (3 ± 0.4) × 10(4) µg(-1) DNA was obtained. The development of transformation method for S. diastatochromogenes 1628 will foster genetic manipulation of this important strain.


Assuntos
Antibacterianos/metabolismo , Streptomyces/genética , Toiocamicina/metabolismo , Transformação Bacteriana , Eletroporação/métodos , Muramidase/farmacologia , Penicilina G/farmacologia , Plasmídeos , Protoplastos/metabolismo , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo
17.
Int J Biol Macromol ; 265(Pt 2): 131032, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521295

RESUMO

Fenpropathrin residues in grain are potentially harmful to humans. Therefore, a fluorimetric lateral flow immunoassay using a zirconium-based organic skeleton (UiO-66) as a signal marker was developed for detecting fenpropathrin. Herein, carboxymethyl chitosan (CMCS) was used to modify UiO-66 and improve its water solubility to facilitate stable binding with sodium fluorescein (NaFL). This resulted in formation of a new fluorescent probe that is more suitable for lateral flow immunoassay (LFIA). The materials were characterized via electron microscopy, Fourier-transform infrared spectroscopy, and powder X-ray diffraction. CMCS and NaFL were successfully bound to UiO-66. Under optimized conditions, the constructed NaFL/UiO-66@CMCS-LFIA exhibited a good linear relationship within the range of 0.98-62.5 µg/L, with a detection limit of 3.91 µg/L. This probe was fourfold more sensitive than traditional colloidal gold nanoparticle-based LFIA. Finally, NaFL/UiO-66@CMCS-LFIA was successfully applied to detect fenpropathrin in wheat and maize samples. The detection limit was 1.56 µg/kg and recoveries ranged from 96.58 % to 118.56 %. This study provides a sensitive, stable, and convenient method for the rapid detection of pesticide residues.


Assuntos
Quitosana , Nanopartículas Metálicas , Estruturas Metalorgânicas , Compostos Organometálicos , Ácidos Ftálicos , Piretrinas , Humanos , Quitosana/química , Ouro
18.
Sci Rep ; 14(1): 11306, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760487

RESUMO

The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most important rice pests in Asia rice regions. BPH has monophagy, migration, rapid reproduction and strong environmental adaptability, and its control is a major problem in pest management. Adult BPH exhibit wing dimorphism, and the symbiotic microbiota enriched in the gut can provide energy for wing flight muscles as a source of nutrition. In order to study the diversity of symbiotic microbiota in different winged BPHs, this paper takes female BPH as the research object. It was found that the number of symbiotic microbiota of different winged BPHs would change at different development stages. Then, based on the 16S rRNA and ITS sequences, a metagenomic library was constructed, combined with fluorescent quantitative PCR and high-throughput sequencing, the dominant symbiotic microbiota flora in the gut of different winged BPHs was found, and the community structure and composition of symbiotic microbiota in different winged BPHs were further determined. Together, our results preliminarily revealed that symbiotic microbiota in the gut of BPHs have certain effects on wing morphology, and understanding the mechanisms underlying wing morph differentiation will clarify how nutritional factors or environmental cues alter or regulate physiological and metabolic pathways. These findings also establish a theoretical basis for subsequent explorations into BPH-symbiont interplay.


Assuntos
Microbioma Gastrointestinal , Hemípteros , RNA Ribossômico 16S , Simbiose , Asas de Animais , Animais , Hemípteros/microbiologia , Hemípteros/fisiologia , Asas de Animais/microbiologia , Feminino , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética
19.
Sci Total Environ ; 912: 169440, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123096

RESUMO

The co-contamination of pesticide residues and mycotoxins in agricultural products is a global concern, with the potential for cumulative and synergistic damaging effects, imposing substantial health and economic burdens to the public. The dosage-sensitive and simultaneous detection of multiple pollutants, with a heightened sensitivity in real samples, poses a significant demand and challenge. Herein, we propose a portable detection method integrating surface-enhanced Raman scattering (SERS)-with lateral flow immunoassay (LFIA), offering high sensitivity and multiplex analysis capabilities. This approach enables the simultaneous detection of imidacloprid (IMI), pyraclostrobin (PYR) and aflatoxin B1 (AFB1) through a single test strip. Utilizing the immune-specific binding between antigen and antibodies, we immobilised antibody- conjugated SERS nanotags on three test lines of the strips to generate Raman signal amplification in the proposed biosensor. Accurate quantitative analysis was performed by measuring the SERS signal intensity on the test lines. The limits of detection were 8.6 pg/mL for IMI, 97.4 pg/mL for PYR and 8.9 pg/mL for AFB1, exhibiting sensitivities 12-fold, 102-fold and11-fold higher than the colorimetric signals, respectively. Importantly, the SERS-LFIA immunosensor demonstrated robust performance when applied to real samples, yielding recoveries ranging from 86.16 % to 115.0 %, with relative standard deviation values below 8.67 %. These results underscore the excellent stability, high selectivity and reliability the proposed SERS-LFIA immunosensor. Consequently, it holds promise for the detection of multiple pesticides and mycotoxins in both environmental and agricultural samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Micotoxinas , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Imunoensaio/métodos , Anticorpos , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Ouro/química
20.
Appl Microbiol Biotechnol ; 97(9): 4055-64, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23090055

RESUMO

1,3-propanediol (1,3-PDO) is one of the most important industrial chemicals due to its highly desired properties and its wide applications as a key component of the emerging polymer industry. Biotechnology route has been one of the most interesting methods for 1,3-PDO production, whereas, the dha genes were essential to 1,3-PDO biosynthesis. In this study, we cloned and placed the dha cassettes under the control of a glyceraldehyde 3-phosphate dehydrogenase gene promoter pGAP and homologous ZrFPS1 gene promoter pZrfps1; these two promoters were further integrated into the chromosome of Z. rouxii JL2011 to generate recombinant strain JL2011-GZ and JL2011-ZZ, respectively. The results showed that the two strains could produce 1,3-PDO from glucose with a final yield of 6.9 and 10.3 g/l, respectively. The engineered strain JL2011-ZZ showed a 2.3- and 1.5-fold increase in the specific activities and final concentration of 1,3-PDO, respectively, with respect to JL2011-GZ. Batch fermentation with aerobic/micro-aerobic combined strategy of JL2011-ZZ resulted a titer of 17.1 g/l and a yield from glucose of 8.6 %. These results demonstrated that JL2011-ZZ would be a potential strain for 1,3-PDO production from glucose.


Assuntos
Glucose/metabolismo , Propilenoglicóis/metabolismo , Zygosaccharomyces/metabolismo , Biotecnologia/métodos , Engenharia Genética/métodos , Zygosaccharomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA