Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artif Organs ; 40(3): E12-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26416723

RESUMO

Successful visual prostheses require stable, long-term attachment. Epiretinal prostheses, in particular, require attachment methods to fix the prosthesis onto the retina. The most common method is fixation with a retinal tack; however, tacks cause retinal trauma, and surgical proficiency is important to ensure optimal placement of the prosthesis near the macula. Accordingly, alternate attachment methods are required. In this study, we detail a novel method of magnetic attachment for an epiretinal prosthesis using two prostheses components positioned on opposing sides of the retina. The magnetic attachment technique was piloted in a feline animal model (chronic, nonrecovery implantation). We also detail a new method to reliably control the magnet coupling force using heat. It was found that the force exerted upon the tissue that separates the two components could be minimized as the measured force is proportionately smaller at the working distance. We thus detail, for the first time, a surgical method using customized magnets to position and affix an epiretinal prosthesis on the retina. The position of the epiretinal prosthesis is reliable, and its location on the retina is accurately controlled by the placement of a secondary magnet in the suprachoroidal location. The electrode position above the retina is less than 50 microns at the center of the device, although there were pressure points seen at the two edges due to curvature misalignment. The degree of retinal compression found in this study was unacceptably high; nevertheless, the normal structure of the retina remained intact under the electrodes.


Assuntos
Imãs/química , Implantação de Prótese/métodos , Retina/cirurgia , Próteses Visuais/química , Animais , Gatos , Eletrodos Implantados , Temperatura Alta , Magnetismo/métodos , Desenho de Prótese , Retina/ultraestrutura
2.
Clin Exp Ophthalmol ; 43(3): 247-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25196241

RESUMO

BACKGROUND: A key requirement for retinal prostheses is the ability for safe removal or replacement. We examined whether suprachoroidal electrode arrays can be removed or replaced after implantation. METHODS: Suprachoroidal electrode arrays were unilaterally implanted into 13 adult felines. After 1 month, arrays were surgically explanted (n = 6), replaced (n = 5) or undisturbed (n = 2). The retina was assessed periodically using fundus photography and optical coherence tomography. Three months after the initial implantation, the function of replaced or undisturbed arrays was assessed by measuring the responses of the visual cortex to retinal electrical stimulation. The histopathology of tissues surrounding the implant was examined. RESULTS: Array explantation or replacement was successful in all cases. Fundus photography showed localized disruption to the tapetum lucidum near the implant's tip in seven subjects following implantation. Although optical coherence tomography showed localized retinal changes, there were no widespread statistically significant differences in the thickness of the retinal layers or choroid. The distance between the electrodes and retina increased after device replacement but returned to control values within eight weeks (P < 0.03). Staphylomas developed near the scleral wound in five animals after device explantation. Device replacement did not alter the cortical evoked potential threshold. Histopathology showed localized outer nuclear layer thinning, tapetal disruption and pseudo-rosette formation, but the overall retinal morphology was preserved. CONCLUSIONS: It is feasible to remove or replace conformable medical grade silicone electrode arrays implanted suprachoroidally. The scleral wound requires careful closure to minimize the risk of staphylomas.


Assuntos
Corioide/cirurgia , Remoção de Dispositivo/métodos , Modelos Animais de Doenças , Eletrodos Implantados , Microeletrodos , Próteses Visuais , Animais , Gatos , Remoção de Dispositivo/efeitos adversos , Estimulação Elétrica , Eletrorretinografia , Potenciais Evocados Visuais , Angiofluoresceinografia , Complicações Intraoperatórias/prevenção & controle , Complicações Pós-Operatórias/prevenção & controle , Implantação de Prótese , Reoperação , Retina/fisiologia , Tomografia de Coerência Óptica , Córtex Visual/fisiologia
3.
Eur J Neurosci ; 39(5): 811-20, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24325274

RESUMO

Extended periods of deafness have profound effects on central auditory system function and organization. Neonatal deafening results in loss of the normal cochleotopic organization of the primary auditory cortex (AI), but environmentally-derived intracochlear electrical stimulation, via a cochlear implant, initiated shortly after deafening, can prevent this loss. We investigated whether such stimulation initiated after an extended period of deafness can restore cochleotopy. In two groups of neonatally-deafened cats, a multi-channel intracochlear electrode array was implanted at 8 weeks of age. One group received only minimal stimulation, associated with brief recordings at 4-6-week intervals, over the following 6 months to check the efficacy of the implant. In the other group, this 6-month period was followed by 6 months of near-continuous intracochlear electrical stimulation from a modified clinical cochlear implant system. We recorded multi-unit clusters in the auditory cortex and used two different methods to define the region of interest in the putative AI. There was no evidence of cochleotopy in any of the minimally stimulated animals, confirming our earlier finding. In three of six chronically stimulated cats there was clear evidence of AI cochleotopy, and in a fourth cat in which the majority of penetrations were in the anterior auditory field there was clear evidence of cochleotopy in that field. The finding that chronic intracochlear electrical stimulation after an extended period of deafness is able to restore cochleotopy in some (but not all) cases has implications for the performance of patients implanted after an extended period of deafness.


Assuntos
Córtex Auditivo/fisiopatologia , Implantes Cocleares , Surdez/fisiopatologia , Terapia por Estimulação Elétrica/métodos , Animais , Gatos , Surdez/terapia , Modelos Animais de Doenças , Eletrofisiologia
4.
Small ; 10(21): 4244-8, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25099026

RESUMO

Mesoporous silica supraparticles (MS-SPs) are prepared via self-assembly of mesoporous silica nanoparticles under capillary force action in confined droplets. The MS-SPs are effective carriers for sustained drug delivery. Animal studies show that these particles are suitable for chronic intracochlear implantation, and neurotrophins released from the MS-SPs can efficiently rescue primary auditory neurons in an in vivo sensorineural hearing loss model.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Portadores de Fármacos , Orelha Interna , Nanopartículas , Dióxido de Silício/química , Animais , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/farmacocinética , Cóclea/efeitos dos fármacos , Cóclea/patologia , Surdez/tratamento farmacológico , Surdez/metabolismo , Surdez/patologia , Preparações de Ação Retardada/farmacocinética , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos , Orelha Interna/efeitos dos fármacos , Orelha Interna/metabolismo , Cobaias , Teste de Materiais , Nanopartículas/química , Nanopartículas/uso terapêutico
5.
Biomacromolecules ; 15(11): 4146-51, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25321318

RESUMO

This paper reports a facile and robust mold-templated technique for the assembly of mesoporous silica (MS) supraparticles and demonstrates their potential as vehicles for codelivery of brain-derived neurotrophic factor (BDNF) and dexamethasone (DEX). The MS supraparticles are assembled using gelatin as a biodegradable adhesive to bind and cross-link the particles. Microfabricated molds made of polydimethylsiloxane are used to control the size and shape of the supraparticles. The obtained mesoporous silica-gelatin hybrid supraparticles (MSG-SPs) are stable in water as well as in organic solvents, such as dimethyl sulfoxide, and efficiently coencapsulate both BDNF and DEX. The MSG-SPs also exhibit sustained release kinetics in simulated physiological conditions (>30 days), making them potential candidates for long-term delivery of therapeutics to the inner ear.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/química , Dexametasona/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Tamanho da Partícula , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Dexametasona/administração & dosagem , Portadores de Fármacos/administração & dosagem , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química
6.
Clin Exp Ophthalmol ; 42(7): 665-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24330322

RESUMO

BACKGROUND: Current surgical techniques for retinal prosthetic implantation require long and complicated surgery, which can increase the risk of complications and adverse outcomes. METHOD: The suprachoroidal position is known to be an easier location to access surgically, and so this study aimed to develop a surgical procedure for implanting a prototype suprachoroidal retinal prosthesis. The array implantation procedure was developed in 14 enucleated eyes. A full-thickness scleral incision was made parallel to the intermuscular septum and superotemporal to the lateral rectus muscle. A pocket was created in the suprachoroidal space, and the moulded electrode array was inserted. The scleral incision was closed and scleral anchor point sutured. In 9 of the 14 eyes examined, the device insertion was obstructed by the posterior ciliary neurovascular bundle. Subsequently, the position of this neurovascular bundle in 10 eyes was characterized. Implantation and lead routing procedure was then developed in six human cadavers. The array was tunnelled forward from behind the pinna to the orbit. Next, a lateral canthotomy was made. Lead fixation was established by creating an orbitotomy drilled in the frontal process of the zygomatic bone. The lateral rectus muscle was detached, and implantation was carried out. Finally, pinna to lateral canthus measurements were taken on 61 patients in order to determine optimal lead length. RESULTS: These results identified potential anatomical obstructions and informed the anatomical fitting of the suprachoroidal retinal prosthesis. CONCLUSION: As a result of this work, a straightforward surgical approach for accurate anatomical suprachoroidal array and lead placement was developed for clinical application.


Assuntos
Corioide/cirurgia , Procedimentos Cirúrgicos Oftalmológicos , Implantação de Prótese/métodos , Próteses Visuais , Cadáver , Feminino , Humanos , Masculino , Teste de Materiais , Retalhos Cirúrgicos , Técnicas de Sutura , Doadores de Tecidos
7.
Adv Sci (Weinh) ; : e2401392, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874431

RESUMO

Viral vectors and lipofection-based gene therapies have dispersion-dependent transduction/transfection profiles that thwart precise targeting. The study describes the development of focused close-field gene electrotransfer (GET) technology, refining spatial control of gene expression. Integration of fluidics for precise delivery of "naked" plasmid deoxyribonucleic acid (DNA) in sucrose carrier within the focused electric field enables negative biasing of near-field conductivity ("conductivity-clamping"-CC), increasing the efficiency of plasma membrane molecular translocation. This enables titratable gene delivery with unprecedently low charge transfer. The clinic-ready bionics-derived CC-GET device achieved neurotrophin-encoding miniplasmid DNA delivery to the cochlea to promote auditory nerve regeneration; validated in deafened guinea pig and cat models, leading to improved central auditory tuning with bionics-based hearing. The performance of CC-GET is evaluated in the brain, an organ problematic for pulsed electric field-based plasmid DNA delivery, due to high required currents causing Joule-heating and damaging electroporation. Here CC-GET enables safe precision targeting of gene expression. In the guinea pig, reporter expression is enabled in physiologically critical brainstem regions, and in the striatum (globus pallidus region) delivery of a red-shifted channelrhodopsin and a genetically-encoded Ca2+ sensor, achieved photoactivated neuromodulation relevant to the treatment of Parkinson's Disease and other focal brain disorders.

8.
Graefes Arch Clin Exp Ophthalmol ; 250(3): 399-407, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21874343

RESUMO

BACKGROUND: Our research goal is to develop a safe, reproducible surgical approach for implantation of a wide-field retinal stimulating array. The aim of this study was to evaluate the pathological response to acute implantation of a functional prototype electrode array in the suprachoroidal space. METHODS: The surgical techniques to implant a 72 platinum electrode array fabricated on 8 × 13 × 0.4 mm polyimide and silicone substrate were developed in a pilot study in anesthetized cats. For the main study, nine eyes were implanted in vivo and unoperated eyes were used as controls. Surgery consisted of a temporal approach with a full-thickness scleral incision 5 mm posterior to the limbus. A suprachoroidal "pocket" was created, the electrode array inserted to sit beneath the area centralis, and placement was confirmed visually. The eyes were collected subsequently for histopathology. RESULTS: The array was consistently inserted into the suprachoroidal space beneath the area centralis in nine eyes. There was a significant hemorrhage in two cases where implantation was complicated by choroidal congestion. Retinal folding occurred only when the array tip was within 2.6 mm of the optic disc (p < 0.01). There was choroidal incarceration at the incision in six eyes and scleral distortion at the array edges in five. No cases were found where the implant breached the retina, choroid, or sclera. CONCLUSIONS: A large stimulation array can be reliably inserted into the suprachoroidal space without trauma to the neuroretina. These findings suggest that this is an appropriate surgical approach for the placement of an electrode array for use in retinal stimulation.


Assuntos
Corioide/cirurgia , Terapia por Estimulação Elétrica/instrumentação , Eletrodos Implantados , Traumatismos Oculares/diagnóstico , Próteses Visuais , Animais , Gatos , Espaço Extracelular , Microeletrodos , Projetos Piloto , Implantação de Prótese , Retina/lesões , Limiar Sensorial , Acuidade Visual/fisiologia
9.
Mol Ther ; 18(6): 1111-22, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20216530

RESUMO

A cochlear implant may be used to electrically stimulate spiral ganglion neurons (SGNs) in people with severe sensorineural hearing loss (SNHL). However, these neurons progressively degenerate after SNHL due to loss of neurotrophins normally supplied by sensory hair cells (HCs). Experimentally, exogenous neurotrophin administration prevents SGN degeneration but can also result in abnormal resprouting of their peripheral fibers. This study aimed to create a target-derived neurotrophin source to increase neuron survival and redirect fiber resprouting following SNHL. Adenoviral (Ad) vectors expressing green fluorescent protein (GFP) alone or in combination with brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT3) were injected into the cochlear scala tympani or scala media of guinea-pigs (GPs) deafened via aminoglycosides for 1 week. After 3 weeks, cochleae were examined for gene expression, neuron survival, and the projection of peripheral fibers in response to gene expression. Injection of vectors into the scala media resulted in more localized gene expression than scala tympani injection with gene expression consistently observed within the partially degenerated organ of Corti. There was also greater neuron survival and evidence of localized fiber responses to neurotrophin-expressing cells within the organ of Corti from scala media injections (P < 0.05), a first step in promoting organized resprouting of auditory peripheral fibers via gene therapy.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Cóclea/patologia , Surdez/genética , Gânglios/metabolismo , Neurônios/metabolismo , Adenoviridae/genética , Animais , Sobrevivência Celular , Cóclea/metabolismo , Feminino , Gânglios/citologia , Regulação da Expressão Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Cobaias , Humanos , Masculino
10.
J Neural Eng ; 18(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33578409

RESUMO

Objective. Established guidelines for safe levels of electrical stimulation for neural prostheses are based on a limited range of the stimulus parameters used clinically. Recent studies have reported particulate platinum (Pt) associated with long-term clinical use of these devices, highlighting the need for more carefully defined safety limits. We previously reported no adverse effects of Pt corrosion products in the cochleae of guinea pigs following 4 weeks of electrical stimulation using charge densities far greater than the published safe limits for cochlear implants. The present study examines the histopathological effects of Pt within the cochlea following continuous stimulation at a charge density well above the defined safe limits for periods up to 6 months.Approach. Six cats were bilaterally implanted with Pt electrode arrays and unilaterally stimulated using charge balanced current pulses at a charge density of 267µC cm-2phase-1using a tripolar electrode configuration. Electrochemical measurements were made throughout the implant duration and evoked potentials recorded at the outset and on completion of the stimulation program. Cochleae were examined histologically for particulate Pt, tissue response, and auditory nerve survival; electrodes were examined for surface corrosion; and cochlea, brain, kidney, and liver tissue analysed for trace levels of Pt.Main results. Chronic stimulation resulted in both a significant increase in tissue response and particulate Pt within the tissue capsule surrounding the electrode array compared with implanted, unstimulated control cochleae. Importantly, there was no stimulus-induced loss of auditory neurons (ANs) or increase in evoked potential thresholds. Stimulated electrodes were significantly more corroded compared with unstimulated electrodes. Trace analysis revealed Pt in both stimulated and control cochleae although significantly greater levels were detected within stimulated cochleae. There was no evidence of Pt in brain or liver; however, trace levels of Pt were recorded in the kidneys of two animals. Finally, increased charge storage capacity and charge injection limit reflected the more extensive electrode corrosion associated with stimulated electrodes.Significance. Long-term electrical stimulation of Pt electrodes at a charge density well above existing safety limits and nearly an order of magnitude higher than levels used clinically, does not adversely affect the AN population or reduce neural function, despite a stimulus-induced tissue response and the accumulation of Pt corrosion product. The mechanism resulting in Pt within the unstimulated cochlea is unclear, while the level of Pt observed systemically following stimulation at these very high charge densities does not appear to be of clinical significance.


Assuntos
Implantes Cocleares , Platina , Animais , Cóclea/patologia , Estimulação Elétrica , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Cobaias , Solubilidade
11.
J Neurophysiol ; 104(6): 3124-35, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20926607

RESUMO

Neural prostheses, such as cochlear and retinal implants, induce perceptual responses by electrically stimulating sensory nerves. These devices restore sensory system function by using patterned electrical stimuli to evoke neural responses. An understanding of their function requires knowledge of the nerves responses to relevant electrical stimuli as well as the likely effects of pathology on nerve function. We describe how sensorineural hearing loss (SNHL) affects the response properties of single auditory nerve fibers (ANFs) to electrical stimuli relevant to cochlear implants. The response of 188 individual ANFs were recorded in response to trains of stimuli presented at 200, 1,000, 2,000, and 5,000 pulse/s in acutely and chronically deafened guinea pigs. The effects of stimulation rate and SNHL on ANF responses during the 0-2 ms period following stimulus onset were examined to minimize the influence of ANF adaptation. As stimulation rate increased to 5,000 pulse/s, threshold decreased, dynamic range increased and first spike latency decreased. Similar effects of stimulation rate were observed following chronic SNHL, although onset threshold and first spike latency were reduced and onset dynamic range increased compared with acutely deafened animals. Facilitation, defined as an increased nerve excitability caused by subthreshold stimulation, was observed in both acute and chronic SNHL groups, although the magnitude of its effect was diminished in the latter. These results indicate that facilitation, demonstrated here using stimuli similar to those used in cochlear implants, influences the ANF response to pulsatile electrical stimulation and may have important implications for cochlear implant signal processing strategies.


Assuntos
Implantes Cocleares , Nervo Coclear/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Neurossensorial/fisiopatologia , Estimulação Acústica , Animais , Limiar Auditivo , Sobrevivência Celular , Doença Crônica , Estimulação Elétrica , Cobaias , Perda Auditiva Neurossensorial/cirurgia , Tempo de Reação/fisiologia , Células Receptoras Sensoriais/fisiologia , Gânglio Espiral da Cóclea/fisiopatologia
12.
Bioelectricity ; 2(4): 391-398, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34476368

RESUMO

Background: Cardiomyocytes derived from pluripotent stem cells are immature. Maturation of cardiomyocytes is a multifactorial dynamic process that involves various factors in vivo that cannot be fully recapitulated in vitro. Here, we report a novel tissue engineering chamber with an integrated electrical stimulator and electrodes that will allow wireless electrical stimulation of cardiac tissue in vivo. Materials and Methods: Immunocompromised rats were implanted with tissue engineering chambers containing the stimulator and electrodes, and control chambers (chambers with electrical stimulator but without the electrodes) in the contralateral limb. Each chamber contained cardiomyocytes derived from human induced pluripotent stem cells (iPSCs). After 7 days of chamber implantation, the electrical stimulators were activated for 4 h per day, for 21 consecutive days. Results: At 4 weeks postimplantation, cardiomyocytes derived from human iPSCs survived, were assembled into compact cardiac tissue, and were perfused and vascularized by the host neovessels. Conclusion: This proof-of-principle study demonstrates the biocompatibility of the tissue engineering chamber with integrated electrical stimulator and electrodes. This could be utilized to study the influence of continuous electrical stimulation on vascularized cardiac or other tissues in vivo.

13.
R Soc Open Sci ; 7(2): 191819, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32257338

RESUMO

Ulcerative colitis is a chronic disease in which the mucosa of the colon or rectum becomes inflamed. An objective biomarker of inflammation will provide quantitative measures to support qualitative assessment during an endoscopic examination. Previous studies show that transmural electrical impedance is a quantifiable biomarker of inflammation. Here, we hypothesize that impedance detects spatially restricted areas of inflammation, thereby allowing the distinction between regions that differ in their severity of inflammation. A platinum ball electrode was placed into minimally inflamed (i.e. normal) or 2,4,6-trinitrobenzene sulphonic acid (TNBS)-inflamed colonic regions of rats and impedance measurements obtained by passing current between the intraluminal and subcutaneous return electrode. Histology of the colon was correlated with impedance measurements. The impedance of minimally inflamed (normal) tissue was 1.5-1.9 kΩ. Following TNBS injection, impedance significantly decreased within the inflammatory penumbra (p < 0.05), and decreased more in the inflammatory epicentre (p = 0.02). Histological damage correlated with impedance values (p < 0.05). Thus, impedance values of 1.5-1.9, 1.3-1.4 and 0.9-1.1 kΩ corresponded to minimally inflamed, mildly inflamed and moderately inflamed tissue, respectively. In conclusion, transmural impedance is an objective, spatially localized biomarker of mucosal integrity, and distinguishes between severities of intestinal inflammation.

14.
J Neural Eng ; 17(5): 056009, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32916669

RESUMO

OBJECTIVE: Cochleae of long-term cochlear implant users have shown evidence of particulate platinum (Pt) corroded from the surface of Pt electrodes. The pathophysiological effect of Pt within the cochlea has not been extensively investigated. We previously evaluated the effects of Pt corrosion at high charge densities and reported negligible pathophysiological impact. The present study extends this work by examining techniques that may reduce Pt corrosion. APPROACH: Deafened guinea pigs were continuously stimulated for 28 d using biphasic current pulses at extreme charge densities using: (i) electrode shorting; (ii) electrode shorting with capacitive coupling (CC); or (iii) electrode shorting with alternating leading phase (AP). On completion of stimulation, cochleae were examined for corrosion product, tissue response, auditory nerve (AN) survival and trace levels of Pt; and electrodes examined for surface corrosion. MAIN RESULTS: Pt corrosion was evident at ≥200 µC cm-2 phase-1; the amount dependent on charge density (p< 0.01) and charge recovery technique (p < 0.01); reduced corrosion was apparent using CC. Tissue response increased with charge density (p< 0.007); cochleae stimulated at ≥200 µC cm-2 phase-1 exhibited a vigorous response including a focal region of necrosis and macrophages. Notably, tissue response was not dependent on the charge recovery technique (p = 0.56). Despite stimulation at high charge densities resulting in significant levels of Pt corrosion, there was no stimulus induced loss of ANs. SIGNIFICANCE: Significant increases in tissue response and Pt corrosion were observed following stimulation at high charge densities. Charge recovery using CC, and to a lesser extent AP, reduced the amount of Pt corrosion but not the tissue response. Stimulation at change densities an order of magnitude higher than those used when programming cochlear implant recipients in the clinic, produced a vigorous tissue response and corrosion products without evidence of neural loss.


Assuntos
Implantes Cocleares , Estimulação Elétrica , Potenciais Evocados Auditivos do Tronco Encefálico , Platina , Animais , Cobaias , Solubilidade
15.
J Neural Eng ; 17(2): 026018, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32135529

RESUMO

OBJECTIVE: Evaluate electrochemical properties, biological response, and surface characterization of a conductive hydrogel (CH) coating following chronic in vivo stimulation. APPROACH: Coated CH or uncoated smooth platinum (Pt) electrode arrays were implanted into the cochlea of rats and stimulated over a 5 week period with more than 57 million biphasic current pulses. Electrochemical impedance spectroscopy (EIS), charge storage capacity (CSC), charge injection limit (CIL), and voltage transient (VT) impedance were measured on the bench before and after stimulation, and in vivo during the stimulation program. Electrically-evoked auditory brainstem responses were recorded to monitor neural function. Following explant, the cochleae were examined histologically and electrodes were examined using scanning electron microscopy. MAIN RESULTS: CH coated electrodes demonstrated a bench-top electrochemical advantage over Pt electrodes before and after the electrical stimulation program. In vivo, CH coated electrodes also had a significant advantage over Pt electrodes throughout the stimulation program, exhibiting higher CSC (p= 0.002), larger CIL (p = 0.002), and lower VT impedance (p < 0.001). The CH cohort exhibited a greater tissue response (p= 0.003) with small deposits of particulate material within the tissue capsule. There was no loss in auditory neuron density or change in neural response thresholds in any cochleae. Examination of the electrode surface revealed that most CH electrodes exhibited some coating loss; however, there was no evidence of corrosion in the underlying Pt. SIGNIFICANCE: CH coated electrodes demonstrated significant electrochemical advantages on the bench-top and in vivo and maintained neural function despite an increased tissue response and coating loss. While further research is required to understand the cause of the coating loss, CH electrodes provide promise for use in neural prostheses.


Assuntos
Implantes Cocleares , Animais , Cóclea , Estimulação Elétrica , Eletrodos , Eletrodos Implantados , Potenciais Evocados Auditivos do Tronco Encefálico , Hidrogéis , Ratos
16.
J Neural Eng ; 17(3): 036012, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32408281

RESUMO

OBJECTIVE: To evaluate the electrochemical properties, biological response, and surface characterization of an electrodeposited Platinum-Iridium (Pt-Ir) electrode coating on cochlear implants subjected to chronic stimulation in vivo. APPROACH: Electrochemical impedance spectroscopy (EIS), charge storage capacity (CSC), charge injection limit (CIL), and voltage transient (VT) impedance were measured bench-top before and after implant and in vivo. Coated Pt-Ir and uncoated Pt electrode arrays were implanted into cochlea of normal hearing rats and stimulated for ∼4 h d, 5 d week-1 for 5 weeks at levels within the normal clinical range. Neural function was monitored using electrically-evoked auditory brainstem responses. After explant, the electrode surfaces were assessed, and cochleae examined histologically. MAIN RESULTS: When measured on bench-top before and after stimulation, Pt-Ir coated electrodes had significantly lower VT impedance (p < 0.001) and significantly higher CSC (p < 0.001) and CIL (p < 0.001) compared to uncoated Pt electrodes. In vivo, the CSC and CIL of Pt-Ir were significantly higher than Pt throughout the implantation period (p= 0.047 and p< 0.001, respectively); however, the VT impedance (p= 0.3) was not. There was no difference in foreign body response between material cohorts, although cochleae implanted with coated electrodes contained small deposits of Pt-Ir. There was no evidence of increased neural loss or loss of neural function in either group. Surface examination revealed no Pt corrosion on any electrodes. SIGNIFICANCE: Electrodeposited Pt-Ir electrodes demonstrated significant improvements in electrochemical performance on the bench-top and in vivo compared to uncoated Pt. Neural function and tissue response to Pt-Ir electrodes were not different from uncoated Pt, despite small deposits of Pt-Ir in the tissue capsule. Electrodeposited Pt-Ir coatings offer promise as an improved electrode coating for active neural prostheses.


Assuntos
Implante Coclear , Implantes Cocleares , Animais , Eletrodos , Irídio , Platina , Ratos
17.
J Neural Eng ; 17(4): 045014, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32659750

RESUMO

OBJECTIVE: Due to their increased proximity to retinal ganglion cells (RGCs), epiretinal visual prostheses present the opportunity for eliciting phosphenes with low thresholds through direct RGC activation. This study characterised the in vivo performance of a novel prototype monolithic epiretinal prosthesis, containing Nitrogen incorporated ultrananocrystalline (N-UNCD) diamond electrodes. APPROACH: A prototype implant containing up to twenty-five 120 × 120 µm N-UNCD electrodes was implanted into 16 anaesthetised cats and attached to the retina either using a single tack or via magnetic coupling with a suprachoroidally placed magnet. Multiunit responses to retinal stimulation using charge-balanced biphasic current pulses were recorded acutely in the visual cortex using a multichannel planar array. Several stimulus parameters were varied including; the stimulating electrode, stimulus polarity, phase duration, return configuration and the number of electrodes stimulated simultaneously. MAIN RESULTS: The rigid nature of the device and its form factor necessitated complex surgical procedures. Surgeries were considered successful in 10/16 animals and cortical responses to single electrode stimulation obtained in eight animals. Clinical imaging and histological outcomes showed severe retinal trauma caused by the device in situ in many instances. Cortical measures were found to significantly depend on the surgical outcomes of individual experiments, phase duration, return configuration and the number of electrodes stimulated simultaneously, but not stimulus polarity. Cortical thresholds were also found to increase over time within an experiment. SIGNIFICANCE: The study successfully demonstrated that an epiretinal prosthesis containing diamond electrodes could produce cortical activity with high precision, albeit only in a small number of cases. Both surgical approaches were highly challenging in terms of reliable and consistent attachment to and stabilisation against the retina, and often resulted in severe retinal trauma. There are key challenges (device form factor and attachment technique) to be resolved for such a device to progress towards clinical application, as current surgical techniques are unable to address these issues.


Assuntos
Diamante , Próteses Visuais , Animais , Gatos , Estimulação Elétrica , Eletrodos , Eletrodos Implantados , Estudos de Viabilidade , Retina
18.
J Neurosci Methods ; 176(2): 144-51, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18835298

RESUMO

Green fluorescent protein (GFP) has been used extensively to label cells in vitro and to track them following their transplantation in vivo. During our studies using the mouse embryonic stem cell line R1 B5-EGFP, we observed variable levels of fluorescence intensity of the GFP within these transfected cells. The variable fluorescence of this protein coupled with the innately autofluorescent nature of several structures within the cochlea collectively made the in vivo identification of these transplanted stem cells difficult. We have modified previously published protocols to enable the discrimination of an authentic GFP signal from autofluorescence in the adult guinea pig cochlea using fluorescence-based immunohistochemistry. The protocol described can also be used to label tissues of the cochlea using a chromogen, such as 3,3'-diaminobenzidine tetrahydrochloride (DAB). Moreover, the described method gives excellent preservation of structural morphology making the tissues useful for both morphological and quantitative studies in combination with robust immunohistochemistry in the adult guinea pig cochlea.


Assuntos
Cóclea/metabolismo , Fluorescência , Imuno-Histoquímica/métodos , Inclusão do Tecido/métodos , Animais , Células Cultivadas , Cóclea/anatomia & histologia , Cóclea/cirurgia , Embrião de Mamíferos , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cobaias , Camundongos , Camundongos Transgênicos , Transplante de Células-Tronco/métodos , Tretinoína/farmacologia
19.
Cereb Cortex ; 18(8): 1799-813, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18063565

RESUMO

Neural activity modulates the maturation of synapses and their organization into functional circuits by regulating activity-dependent signaling pathways. Phosphorylation of cyclic AMP/Ca(2+)-responsive element-binding protein (CREB) is widely accepted as a stimulus-inducible event driven by calcium influx into depolarized neurons. In turn, phosphorylated CREB (pCREB) activates the transcription of brain-derived neurotrophic factor (BDNF), which is needed for synaptic transmission and long-term potentiation. We examined how these molecular events are influenced by sensorineural hearing loss and long-term reactivation via cochlear implants. Sensorineural hearing loss reduced the expression of pCREB and BDNF. In contrast, deafened animals subject to long-term, unilateral intracochlear electrical stimulation exhibited an increased expression of pCREB and BDNF in the contralateral auditory cortical neurons, relative to ipsilateral ones. These changes induced by cochlear implants are further accompanied by the activation of the mitogen-activated protein kinase (MAPK) signaling pathway, which has been implicated in long-lasting forms of synaptic plasticity. Because CREB and BDNF are critical modulators of synaptic plasticity, our data describe for the first time possible molecular candidate genes, which are altered in the auditory cortex, following cochlear implantation. These findings provide insights into adaptive, molecular mechanisms recruited by the brain upon functional electrical stimulation by neural prosthetic devices.


Assuntos
Córtex Auditivo/metabolismo , Implantes Cocleares , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Surdez/metabolismo , Surdez/cirurgia , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Surdez/genética , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Genes fos/fisiologia , Próteses e Implantes , Ratos
20.
Pharmacol Ther ; 200: 190-209, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31075354

RESUMO

An estimated 466 million people suffer from hearing loss worldwide. Sensorineural hearing loss is characterized by degeneration of key structures of the sensory pathway in the cochlea such as the sensory hair cells, the primary auditory neurons and their synaptic connection to the hair cells - the ribbon synapse. Various strategies to protect or regenerate these sensory cells and structures are the subject of intensive research. Yet despite recent advances in our understandings of the capacity of the cochlea for repair and regeneration there are currently no pharmacological or biological interventions for hearing loss. Current research focusses on localized cochlear drug, gene and cell-based therapies. One of the more promising drug-based therapies is based on neurotrophic factors for the repair of the ribbon synapse after noise exposure, as well as preventing loss of primary auditory neurons and regrowth of the auditory neuron fibers after severe hearing loss. Drug therapy delivery technologies are being employed to address the specific needs of neurotrophin and other therapies for hearing loss that include the need for high doses, long-term delivery, localised or cell-specific targeting and techniques for their safe and efficacious delivery to the cochlea. Novel biomaterials are enabling high payloads of drugs to be administered to the cochlea with subsequent slow-release properties that are proving to be beneficial for treating hearing loss. In parallel, new gene therapy technologies are addressing the need for cell specificity and high efficacy for the treatment of both genetic and acquired hearing loss with promising reports of hearing recovery. Some biomaterials and cell therapies are being used in conjunction with the cochlear implant ensuring therapeutic benefit to the primary neurons during electrical stimulation. This review will introduce the auditory system, hearing loss and the potential for repair and regeneration in the cochlea. Drug delivery to the cochlea will then be reviewed, with a focus on new biomaterials, gene therapy technologies, cell therapy and the use of the cochlear implant as a vehicle for drug delivery. With the current pre-clinical research effort into therapies for hearing loss, including clinical trials for gene therapy, the future for the treatment for hearing loss is looking bright.


Assuntos
Perda Auditiva/terapia , Animais , Materiais Biocompatíveis/uso terapêutico , Terapia Baseada em Transplante de Células e Tecidos , Cóclea/anatomia & histologia , Cóclea/metabolismo , Cóclea/fisiologia , Implantes Cocleares , Sistemas de Liberação de Medicamentos , Terapia Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA