Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Reg Environ Change ; 23(2): 65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125024

RESUMO

We use a combination of proxy records from a high-resolution analysis of sediments from Searsville Lake and adjacent Upper Lake Marsh and historical records to document over one and a half centuries of vegetation and socio-ecological change-relating to logging, agricultural land use change, dam construction, chemical applications, recreation, and other drivers-on the San Francisco Peninsula. A relatively open vegetation with minimal oak (Quercus) and coast redwood (Sequoia sempervirens) in the late 1850s reflects widespread logging and grazing during the nineteenth century. Forest and woodland expansion occurred in the early twentieth century, with forests composed of coast redwood and oak, among other taxa, as both logging and grazing declined. Invasive species include those associated with pasturage (Rume x, Plantago), landscape disturbance (Urtica, Amaranthaceae), planting for wood production and wind barriers (Eucalyptus), and agriculture. Agricultural species, including wheat, rye, and corn, were more common in the early twentieth century than subsequently. Wetland and aquatic pollen and fungal spores document a complex hydrological history, often associated with fluctuating water levels, application of algaecides, raising of Searsville Dam, and construction of a levee. By pairing the paleoecological and historical records of both lakes, we have been able to reconstruct the previously undocumented impacts of socio-ecological influences on this drainage, all of which overprinted known climate changes. Recognizing the ecological manifestations of these impacts puts into perspective the extent to which people have interacted with and transformed the environment in the transition into the Anthropocene. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-023-02056-9.

2.
Sci Adv ; 9(39): eadh4973, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37756412

RESUMO

Compound earthquakes involving simultaneous ruptures along multiple faults often define a region's upper threshold of maximum magnitude. Yet, the potential for linked faulting remains poorly understood given the infrequency of these events in the historic era. Geological records provide longer perspectives, although temporal uncertainties are too broad to clearly pinpoint single multifault events. Here, we use dendrochronological dating and a cosmogenic radiation pulse to constrain the death dates of earthquake-killed trees along two adjacent fault zones near Seattle, Washington to within a 6-month period between the 923 and 924 CE growing seasons. Our narrow constraints conclusively show linked rupturing that occurred either as a single composite earthquake of estimated magnitude 7.8 or as a closely spaced double earthquake sequence with estimated magnitudes of 7.5 and 7.3. These scenarios, which are not recognized in current hazard models, increase the maximum earthquake size needed for seismic preparedness and engineering design within the Puget Sound region of >4 million residents.

3.
Anthropocene Rev ; 10(1): 116-145, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37213212

RESUMO

Cores from Searsville Lake within Stanford University's Jasper Ridge Biological Preserve, California, USA, are examined to identify a potential GSSP for the Anthropocene: core JRBP2018-VC01B (944.5 cm-long) and tightly correlated JRBP2018-VC01A (852.5 cm-long). Spanning from 1900 CE ± 3 years to 2018 CE, a secure chronology resolved to the sub-annual level allows detailed exploration of the Holocene-Anthropocene transition. We identify the primary GSSP marker as first appearance of 239,240Pu (372-374 cm) in JRBP2018-VC01B and designate the GSSP depth as the distinct boundary between wet and dry season at 366 cm (6 cm above the first sample containing 239,240Pu) and corresponding to October-December 1948 CE. This is consistent with a lag of 1-2 years between ejection of 239,240Pu into the atmosphere and deposition. Auxiliary markers include: first appearance of 137Cs in 1958; late 20th-century decreases in δ15N; late 20th-century elevation in SCPs, Hg, Pb, and other heavy metals; and changes in abundance and presence of ostracod, algae, rotifer and protozoan microfossils. Fossil pollen document anthropogenic landscape changes related to logging and agriculture. As part of a major university, the Searsville site has long been used for research and education, serves users locally to internationally, and is protected yet accessible for future studies and communication about the Anthropocene. Plain Word Summary: The Global boundary Stratotype Section and Point (GSSP) for the proposed Anthropocene Series/Epoch is suggested to lie in sediments accumulated over the last ~120 years in Searsville Lake, Woodside, California, USA. The site fulfills all of the ideal criteria for defining and placing a GSSP. In addition, the Searsville site is particularly appropriate to mark the onset of the Anthropocene, because it was anthropogenic activities-the damming of a watershed-that created a geologic record that now preserves the very signals that can be used to recognize the Anthropocene worldwide.

4.
Science ; 300(5622): 1113-8, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12750512

RESUMO

The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA