Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Immunol ; 22(1): 67-73, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33169014

RESUMO

Severe acute respiratory syndrome coronavirus 2 infections can cause coronavirus disease 2019 (COVID-19), which manifests with a range of severities from mild illness to life-threatening pneumonia and multi-organ failure. Severe COVID-19 is characterized by an inflammatory signature, including high levels of inflammatory cytokines, alveolar inflammatory infiltrates and vascular microthrombi. Here we show that patients with severe COVID-19 produced a unique serologic signature, including an increased likelihood of IgG1 with afucosylated Fc glycans. This Fc modification on severe acute respiratory syndrome coronavirus 2 IgGs enhanced interactions with the activating Fcγ receptor FcγRIIIa; when incorporated into immune complexes, Fc afucosylation enhanced production of inflammatory cytokines by monocytes, including interleukin-6 and tumor necrosis factor. These results show that disease severity in COVID-19 correlates with the presence of proinflammatory IgG Fc structures, including afucosylated IgG1.


Assuntos
COVID-19/imunologia , Citocinas/imunologia , Imunoglobulina G/imunologia , Receptores de IgG/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , COVID-19/metabolismo , COVID-19/virologia , Criança , Citocinas/metabolismo , Feminino , Glicosilação , Humanos , Imunoglobulina G/metabolismo , Interleucina-6 , Masculino , Pessoa de Meia-Idade , Receptores de IgG/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(23): 12943-12951, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461366

RESUMO

The IgG Fc domain has the capacity to interact with diverse types of receptors, including the neonatal Fc receptor (FcRn) and Fcγ receptors (FcγRs), which confer pleiotropic biological activities. Whereas FcRn regulates IgG epithelial transport and recycling, Fc effector activities, such as antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis, are mediated by FcγRs, which upon cross-linking transduce signals that modulate the function of effector leukocytes. Despite the well-defined and nonoverlapping functional properties of FcRn and FcγRs, recent studies have suggested that FcγRs mediate transplacental IgG transport, as certain Fc glycoforms were reported to be enriched in fetal circulation. To determine the contribution of FcγRs and FcRn to the maternal-fetal transport of IgG, we characterized the IgG Fc glycosylation in paired maternal-fetal samples from patient cohorts from Uganda and Nicaragua. No differences in IgG1 Fc glycan profiles and minimal differences in IgG2 Fc glycans were noted, whereas the presence or absence of galactose on the Fc glycan of IgG1 did not alter FcγRIIIa or FcRn binding, half-life, or their ability to deplete target cells in FcγR/FcRn humanized mice. Modeling maternal-fetal transport in FcγR/FcRn humanized mice confirmed that only FcRn contributed to transplacental transport of IgG; IgG selectively enhanced for FcRn binding resulted in enhanced accumulation of maternal antibody in the fetus. In contrast, enhancing FcγRIIIa binding did not result in enhanced maternal-fetal transport. These results argue against a role for FcγRs in IgG transplacental transport, suggesting Fc engineering of maternally administered antibody to enhance only FcRn binding as a means to improve maternal-fetal transport of IgG.


Assuntos
Sangue Fetal/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/metabolismo , Troca Materno-Fetal/imunologia , Circulação Placentária/imunologia , Receptores Fc/metabolismo , Animais , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoglobulina G/imunologia , Camundongos , Camundongos Transgênicos , Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores Fc/genética , Receptores de IgG/genética , Receptores de IgG/metabolismo
3.
Anal Bioanal Chem ; 413(2): 419-429, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33099676

RESUMO

Tandem mass tags (TMTs) have increasingly become an attractive technique for global proteomics. However, its effectiveness for multiplexed quantitation by traditional tandem mass spectrometry (MS2) suffers from ratio distortion. Synchronous precursor selection (SPS) MS3 has been widely accepted for improved quantitation accuracy, but concurrently decreased proteome coverage. Recently, a Real-Time Search algorithm has been integrated with the SPS MS3 pipeline (RTS MS3) to provide accurate quantitation and improved depth of coverage. In this mechanistic study of the impact of exposure to hydrogen sulfide (H2S) on the respiration of swine, we used TMT-based comparative proteomics of lung tissues from control and H2S-treated subjects as a test case to evaluate traditional MS2, SPS MS3, and RTS MS3 acquisition methods on both the Orbitrap Fusion and Orbitrap Eclipse platforms. Comparison of the results obtained by the MS2 with those of SPS MS3 and RTS MS3 methods suggests that the MS3-driven quantitative strategies provided a more accurate global-scale quantitation; however, only RTS MS3 provided proteomic coverage that rivaled that of traditional MS2 analysis. RTS MS3 not only yields more productive MS3 spectra than SPS MS3 but also appears to focus the analysis more effectively on unique peptides. Furthermore, pathway enrichment analyses of the H2S-altered proteins demonstrated that an additional apoptosis pathway was discovered exclusively by RTS MS3. This finding was verified by RT-qPCR, western blotting, and TUNEL staining experiments. We conclude that RTS MS3 workflow enables simultaneous improvement of quantitative accuracy and proteome coverage over alternative approaches (MS2 and SPS MS3). Graphical abstract.


Assuntos
Sulfeto de Hidrogênio/análise , Pulmão/metabolismo , Proteoma , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Animais , Apoptose , Técnicas de Química Analítica , Feminino , Masculino , Peptídeos , Coloração e Rotulagem , Suínos
4.
Angew Chem Int Ed Engl ; 56(1): 235-238, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27901298

RESUMO

For nanobiotechnology to achieve its potential, complex organic-inorganic systems must grow to utilize the sequential functions of multiple biological components. Critical challenges exist: immobilizing enzymes can block substrate-binding sites or prohibit conformational changes, substrate composition can interfere with activity, and multistep reactions risk diffusion of intermediates. As a result, the most complex tethered reaction reported involves only 3 enzymes. Inspired by the oriented immobilization of glycolytic enzymes on the fibrous sheath of mammalian sperm, here we show a complex reaction of 10 enzymes tethered to nanoparticles. Although individual enzyme efficiency was higher in solution, the efficacy of the 10-step pathway measured by conversion of glucose to lactate was significantly higher when tethered. To our knowledge, this is the most complex organic-inorganic system described, and it shows that tethered, multi-step biological pathways can be reconstituted in hybrid systems to carry out functions such as energy production or delivery of molecular cargo.


Assuntos
Enzimas/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Nanopartículas/metabolismo , Animais , Mimetismo Biológico , Biotecnologia , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose/química , Humanos , Ácido Láctico/química , Nanopartículas/química , Nanotecnologia
5.
Proteomics ; 16(15-16): 2081-94, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27089858

RESUMO

We describe here the use of label-free wide selected-ion monitoring data-independent acquisition (WiSIM-DIA) to identify proteins that are involved in the formation of tomato (Solanum lycopersicum) fruit cuticles and that are regulated by the transcription factor CUTIN DEFICIENT2 (CD2). A spectral library consisting of 11 753 unique peptides, corresponding to 2338 tomato protein groups, was used and the DIA analysis was performed at the MS1 level utilizing narrow mass windows for extraction with Skyline 2.6 software. We identified a total of 1140 proteins, 67 of which had expression levels that differed significantly between the cd2 tomato mutant and the wild-type cultivar M82. Differentially expressed proteins including a key protein involved in cutin biosynthesis, were selected for validation by target SRM/MRM and by Western blot analysis. In addition to confirming a role for CD2 in regulating cuticle formation, the results also revealed that CD2 influences pathways associated with cell wall biology, anthocyanin biosynthesis, plant development, and responses to stress, which complements findings of earlier RNA-Seq experiments. Our results provide new insights into molecular processes and aspects of fruit biology associated with CD2 function, and demonstrate that the WiSIM-DIA is an effective quantitative approach for global protein identifications.


Assuntos
Frutas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteômica/métodos
6.
PLoS Pathog ; 10(10): e1004439, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340543

RESUMO

Francisella tularensis causes the disease tularemia. Human pulmonary exposure to the most virulent form, F. tularensis subsp. tularensis (Ftt), leads to high morbidity and mortality, resulting in this bacterium being classified as a potential biothreat agent. However, a closely-related species, F. novicida, is avirulent in healthy humans. No tularemia vaccine is currently approved for human use. We demonstrate that a single dose vaccine of a live attenuated F. novicida strain (Fn iglD) protects against subsequent pulmonary challenge with Ftt using two different animal models, Fischer 344 rats and cynomolgus macaques (NHP). The Fn iglD vaccine showed protective efficacy in rats, as did a Ftt iglD vaccine, suggesting no disadvantage to utilizing the low human virulent Francisella species to induce protective immunity. Comparison of specific antibody profiles in vaccinated rat and NHP sera by proteome array identified a core set of immunodominant antigens in vaccinated animals. This is the first report of a defined live attenuated vaccine that demonstrates efficacy against pulmonary tularemia in a NHP, and indicates that the low human virulence F. novicida functions as an effective tularemia vaccine platform.


Assuntos
Vacinas Bacterianas/imunologia , Francisella tularensis , Epitopos Imunodominantes/imunologia , Tularemia/imunologia , Animais , Macaca fascicularis , Camundongos , Modelos Animais , Ratos Endogâmicos F344 , Tularemia/mortalidade , Tularemia/prevenção & controle , Vacinação , Vacinas Atenuadas/imunologia
7.
Bioorg Med Chem ; 24(24): 6429-6439, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27614915

RESUMO

The efficacy of plazomicin for pneumonic plague was evaluated in a non-human primate model. African Green monkeys challenged with a lethal aerosol of Yersinia pestis [median (range) of 98 (15-331) LD50s] received placebo (n=12) or 'humanized' dose regimens (6.25, 12.5 or 25mg/kg every 24h) of plazomicin (n=52) after the onset of fever for a duration of 5 or 10days. All animals treated with placebo died, while 36 plazomicin-treated animals survived through study end. The majority (33/36) were either in the 10-day (high-/mid-/low-dose) or 5-day high-dose groups. The findings suggest an exposure range of plazomicin for treatment of pneumonic/bacteremic Y. pestis infection in humans.


Assuntos
Modelos Animais de Doenças , Peste/tratamento farmacológico , Sisomicina/análogos & derivados , Animais , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Conformação Molecular , Sisomicina/química , Sisomicina/uso terapêutico
8.
Mol Cell Proteomics ; 13(2): 566-79, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24198434

RESUMO

Lectin affinity chromatography (LAC) can provide a valuable front-end enrichment strategy for the study of N-glycoproteins and has been used to characterize a broad range eukaryotic N-glycoproteomes. Moreover, studies with mammalian systems have suggested that the use of multiple lectins with different affinities can be particularly effective. A multi-lectin approach has also been reported to provide a significant benefit for the analysis of plant N-glycoproteins; however, it has yet to be determined whether certain lectins, or combinations of lectins are optimal for plant N-glycoproteome profiling; or whether specific lectins show preferential association with particular N-glycosylation sites or N-glycan structures. We describe here a comparative study of three mannose-binding lectins, concanavalin A, snowdrop lectin, and lentil lectin, to profile the N-glycoproteome of mature green stage tomato (Solanum lycopersicum) fruit pericarp. Through coupling lectin affinity chromatography with a shotgun proteomics strategy, we identified 448 putative N-glycoproteins, whereas a parallel lectin affinity chromatography plus hydrophilic interaction chromatography analysis revealed 318 putative N-glycosylation sites on 230 N-glycoproteins, of which 100 overlapped with the shotgun analysis, as well as 17 N-glycan structures. The use of multiple lectins substantially increased N-glycoproteome coverage and although there were no discernible differences in the structures of N-glycans, or the charge, isoelectric point (pI) or hydrophobicity of the glycopeptides that differentially bound to each lectin, differences were observed in the amino acid frequency at the -1 and +1 subsites of the N-glycosylation sites. We also demonstrated an alternative and complementary in planta recombinant expression strategy, followed by affinity MS analysis, to identify the putative N-glycan structures of glycoproteins whose abundance is too low to be readily determined by a shotgun approach, and/or combined with deglycosylation for predicted deamidated sites, using a xyloglucan-specific endoglucanase inhibitor protein as an example.


Assuntos
Glicoproteínas/metabolismo , Lectinas de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Sequência de Carboidratos , Cromatografia de Afinidade , Glicoproteínas/análise , Glicosilação , Solanum lycopersicum/química , Modelos Biológicos , Dados de Sequência Molecular , Lectinas de Plantas/análise , Proteínas de Plantas/análise , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteoma/metabolismo , Proteômica
9.
Environ Microbiol ; 17(6): 1977-90, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25389064

RESUMO

Understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. Using non-denaturing separations and mass spectrometry identification, in combination with a colorimetric screen for chelated Fe(III)-NTA reduction with NADH as electron donor, we have identified proteins from the D. reducens proteome not previously characterized as iron reductases. Their function was confirmed by heterologous expression in Escherichia coli. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. The proteins identified are NADH : flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase flavin adenine dinucleotide/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble protein fraction, suggesting a type of membrane association, although PSORTb predicts both proteins are cytoplasmic. This study is the first functional proteomic analysis of D. reducens and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.


Assuntos
Desulfotomaculum/metabolismo , FMN Redutase/metabolismo , Compostos Férricos/metabolismo , Metais/metabolismo , Desulfotomaculum/genética , Escherichia coli/genética , Escherichia coli/metabolismo , NAD/metabolismo , Oxirredução , Proteoma/metabolismo , Proteômica
10.
Am J Pathol ; 184(12): 3205-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25285720

RESUMO

Inhalational anthrax is caused by inhalation of Bacillus anthracis spores. The ability of B. anthracis to cause anthrax is attributed to the plasmid-encoded A/B-type toxins, edema toxin (edema factor and protective antigen) and lethal toxin (lethal factor and protective antigen), and a poly-d-glutamic acid capsule. To better understand the contribution of these toxins to the disease pathophysiology in vivo, we used B. anthracis Ames strain and isogenic toxin deletion mutants derived from the Ames strain to examine the role of lethal toxin and edema toxin after pulmonary spore challenge of cynomolgus macaques. Lethal toxin, but not edema toxin, was required to induce sustained bacteremia and death after pulmonary challenge with spores delivered via bronchoscopy. After intravenous challenge with bacilli to model the systemic phase of infection, lethal toxin contributed to bacterial proliferation and subsequent host death to a greater extent than edema toxin. Deletion of protective antigen resulted in greater loss of virulence after intravenous challenge with bacilli than deletion of lethal toxin or edema toxin alone. These findings are consistent with the ability of anti-protective antigen antibodies to prevent anthrax and suggest that lethal factor is the dominant toxin that contributes to the escape of significant numbers of bacilli from the thoracic cavity to cause anthrax after inhalation challenge with spores.


Assuntos
Antraz/microbiologia , Antígenos de Bactérias/metabolismo , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/metabolismo , Pulmão/microbiologia , Infecções Respiratórias/microbiologia , Animais , Anticorpos Antibacterianos/sangue , Feminino , Macaca , Masculino , Esporos Bacterianos/patogenicidade , Virulência , Fatores de Virulência/metabolismo
11.
J Med Virol ; 87(10): 1796-805, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26243168

RESUMO

The ability of a non-propagating microbial transport medium to maintain the viability of clinically relevant viruses was compared to a similar commercial medium to establish performance equivalence. Two dilutions of stock of test viruses, namely adenovirus (AdV), cytomegalovirus (CMV), echovirus Type 30 (EV), herpes simplex virus (HSV) types 1 and 2, influenza A, parainfluenza 3 (PIV), respiratory syncytial virus (RSV), and varicella zoster virus (VZV), were spiked into Puritan® Medical Products Company Universal Transport System (UniTranz-RT™) and BD(TM) Universal Viral Transport System (UVT) and incubated at 4 °C and room temperature (RT) for up to 72 hr. Post incubation assessment of recovery of AdV, EV, HSV-2, PIV, and VZV from UniTranz-RT™ and UVT using shell vial assays followed by immunofluorescence staining demonstrated statistically significant differences between both transport media. In general, significantly higher recoveries of AdV, EV, and VZV were found from UniTranz-RT™ than UVT whereas HSV-2 and PIV were recovered better from UVT than UniTranz-RT™, under specific test conditions. The recovery of HSV-1, influenza A, PIV, and RSV showed no significant differences between transport media. Sulforhodamine B-based assay analysis of UniTranz-RT™ lots prior to and at expiration exhibited no cytotoxicity. The overall results of the study validate the full performance of UniTranz-RT™ as a viral transport medium and establish its effectiveness on par with the UVT.


Assuntos
Viabilidade Microbiana , Manejo de Espécimes/métodos , Meios de Transporte/métodos , Adenoviridae/crescimento & desenvolvimento , Meios de Cultura , Citomegalovirus/crescimento & desenvolvimento , Herpesvirus Humano 1/crescimento & desenvolvimento , Herpesvirus Humano 2/crescimento & desenvolvimento , Herpesvirus Humano 3/crescimento & desenvolvimento , Humanos , Preservação Biológica/métodos , Vírus Sinciciais Respiratórios/crescimento & desenvolvimento , Meios de Transporte/normas , Vírus/crescimento & desenvolvimento
12.
Electrophoresis ; 34(16): 2417-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23580464

RESUMO

Glycosylation is a common PTM of plant proteins that impacts a large number of important biological processes. Nevertheless, the impacts of differential site occupancy and the nature of specific glycoforms are obscure. Historically, characterization of glycoproteins has been difficult due to the distinct physicochemical properties of the peptidyl and glycan moieties, the variable and dynamic nature of the glycosylation process, their heterogeneous nature, and the low relative abundance of each glycoform. In this study, we explore a new pipeline developed for large-scale empirical identification of N-linked glycoproteins of tomato fruit as part of our ongoing efforts to characterize the tomato secretome. The workflow presented involves a combination of lectin affinity, tryptic digestion, ion-pairing HILIC, and precursor ion-driven data-dependent MS/MS analysis with a script to facilitate the identification and characterization of occupied N-linked glycosylation sites. A total of 212 glycoproteins were identified in this study, in which 26 glycopeptides from 24 glycoproteins were successfully characterized in just one HILIC fraction. Further precursor ion discovery-based MS/MS and deglycosylation followed by high accuracy and resolution MS analysis were used to confirm the glycosylation sites and determine site occupancy rates. The workflow reported is robust and capable of producing large amounts of empirical data involving N-linked glycosylation sites and their associated glycoforms.


Assuntos
Parede Celular/química , Cromatografia de Afinidade/métodos , Frutas/química , Glicoproteínas/análise , Proteínas de Plantas/análise , Solanum lycopersicum/química , Concanavalina A/química , Glicopeptídeos/análise , Glicopeptídeos/química , Glicoproteínas/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Proteínas de Plantas/química , Proteoma/química , Projetos de Pesquisa , Cloreto de Sódio , Espectrometria de Massas em Tandem/métodos , Tripsina/química
13.
Anal Biochem ; 433(2): 218-26, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23123429

RESUMO

Protein ADP-ribosylation, including mono- and poly-ADP-ribosylation, is increasingly recognized to play important roles in various biological pathways. Molecular understanding of the functions of ADP-ribosylation requires the identification of the sites of modification. Although tandem mass spectrometry (MS/MS) is widely recognized as an effective means for determining protein modifications, identification of ADP-ribosylation sites has been challenging due to the labile and hydrophilic nature of the modification. Here we applied precursor ion scanning-triggered MS/MS analysis on a hybrid quadrupole linear ion trap mass spectrometer for selectively detecting ADP-ribosylated peptides and determining the auto-ADP-ribosylation sites of CD38 (cluster of differentiation 38) E226D and E226Q mutants. CD38 is an enzyme that catalyzes the hydrolysis of nicotinamide adenine dinucleotide (NAD) to ADP-ribose. Here we show that NAD can covalently label CD38 E226D and E226Q mutants but not wild-type CD38. In this study, we have successfully identified the D226/Q226 and K129 residues of the two CD38 mutants being the ADP-ribosylation sites using precursor ion scanning hybrid quadrupole linear ion trap mass spectrometry. The results offer insights about the CD38 enzymatic reaction mechanism. The precursor ion scanning method should be useful for identifying the modification sites of other ADP-ribosyltransferases such as poly(ADP-ribose) polymerases.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Glicoproteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , ADP-Ribosil Ciclase 1/química , ADP-Ribosil Ciclase 1/genética , Substituição de Aminoácidos , Humanos , Espectrometria de Massas , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , NAD/química , NAD/genética , NAD/metabolismo , Poli Adenosina Difosfato Ribose/química , Poli Adenosina Difosfato Ribose/genética , Proteínas/química , Proteínas/genética
14.
J Theor Biol ; 329: 20-31, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23567649

RESUMO

There is a need to advance our ability to conduct credible human risk assessments for inhalational anthrax associated with exposure to a low number of bacteria. Combining animal data with computational models of disease will be central in the low-dose and cross-species extrapolations required in achieving this goal. The objective of the current work was to apply and advance the competing risks (CR) computational model of inhalational anthrax where data was collected from NZW rabbits exposed to aerosols of Ames strain Bacillus anthracis. An initial aim was to parameterize the CR model using high-dose rabbit data and then conduct a low-dose extrapolation. The CR low-dose attack rate was then compared against known low-dose rabbit data as well as the low-dose curve obtained when the entire rabbit dose-response data set was fitted to an exponential dose-response (EDR) model. The CR model predictions demonstrated excellent agreement with actual low-dose rabbit data. We next used a modified CR model (MCR) to examine disease incubation period (the time to reach a fever >40 °C). The MCR model predicted a germination period of 14.5h following exposure to a low spore dose, which was confirmed by monitoring spore germination in the rabbit lung using PCR, and predicted a low-dose disease incubation period in the rabbit between 14.7 and 16.8 days. Overall, the CR and MCR model appeared to describe rabbit inhalational anthrax well. These results are discussed in the context of conducting laboratory studies in other relevant animal models, combining the CR/MCR model with other computation models of inhalational anthrax, and using the resulting information towards extrapolating a low-dose response prediction for man.


Assuntos
Antraz/microbiologia , Bacillus anthracis/patogenicidade , Período de Incubação de Doenças Infecciosas , Modelos Biológicos , Infecções Respiratórias/microbiologia , Animais , Antraz/prevenção & controle , Vacinas contra Antraz , Bacillus anthracis/fisiologia , Carga Bacteriana , Modelos Animais de Doenças , Pulmão/microbiologia , Masculino , Coelhos , Infecções Respiratórias/prevenção & controle , Medição de Risco/métodos , Esporos Bacterianos/patogenicidade , Esporos Bacterianos/fisiologia
15.
Proteomics ; 12(8): 1269-88, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22577028

RESUMO

The main objective of this study was to characterize the N-linked glycosylation profiles of recombinant hemagglutinin (HA) proteins expressed in either insect or plant hosts, and to develop a mass spectrometry based workflow that can be used in quality control to assess batch-to-batch reproducibility for recombinant HA glycosylation. HA is a surface glycoprotein of the influenza virus that plays a key role in viral infectivity and pathogenesis. Characterization of the glycans for plant recombinant HA from the viral strain A/California/04/09 (H1N1) has not yet been reported. In this study, N-linked glycosylation patterns of the recombinant HAs from both insect and plant hosts were characterized by precursor ion scan-driven data-dependent analysis followed by high-resolution MS/MS analysis of the deglycosylated tryptic peptides. Five glycosylation sites (N11, N23, N276, N287, and N481) were identified containing high mannose type glycans in plant-expressed HAs, and complex type glycoforms for the insect-expressed HA. More than 95% site occupancy was observed for all glycosylation sites except N11, which was 60% occupied. Multiple-reaction monitoring based quantitation analysis was developed for each glycopeptide isoform and the quantitative results indicate that the Man(8) GlcNAc(2) is the dominant glycan for all sites in plant-expressed HAs. The relative abundance of the glycoforms at each specific glycosylation site and the relative quantitation for each glycoform among three HAs were determined. Few differences in the glycosylation profiles were detected between the two batches of plant HAs studied, but there were significant differences between the glycosylation patterns in the HAs generated in plant and insect expression hosts.


Assuntos
Baculoviridae/química , Cromatografia Líquida/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/análise , Vírus da Influenza A Subtipo H1N1/química , Nicotiana/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Dados de Sequência Molecular , Peptídeos/análise , Polissacarídeos/análise , Controle de Qualidade , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Spodoptera/virologia , Nicotiana/genética , Tripsina/química
16.
J Steroid Biochem Mol Biol ; 216: 106034, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34843870

RESUMO

The plasma pool of the hormone 1,25-dihydroxyvitamin D (1,25(OH)2D) is increased throughout most of human pregnancy. Mechanisms behind this adaptation are unclear, in part due to limited data on vitamin D kinetics during pregnancy. Stable isotopes make it possible to study vitamin D kinetics in vulnerable study populations like pregnant women. We conducted a pilot study of vitamin D kinetics in nonpregnant and pregnant women. We evaluated a clinical protocol and developed analytical methods to assess the serum appearance and disappearance of trideuterated vitamin D3 (d3-vitamin D3) and trideuterated 25-hydroxyvitamin D3 (d3-25(OH)D3) after a single oral dose of 25 µg of [6,19,19-2H]-vitamin D3 (d3-vitamin D3). Blood was collected at baseline and 2, 4, 6, 24, 168, 264, and 456 hours post-dosing. We then described the serum kinetic profiles of d3-vitamin D3 and d3-25(OH)D3 in nonpregnant and pregnant women. Serum kinetic profiles of d3-vitamin D3 and d3-25(OH)D3 followed a time course in line with previous pharmacokinetic studies. There was marked variability between participants in the area under the concentration-time curve (AUC) of d3-25(OH)D3 over the 20-day study period. This AUC of d3-25(OH)D3 was positively correlated with the serum vitamin D binding protein (DBP) concentration, which was higher in pregnant compared with nonpregnant women. The mean serum half-life of 25(OH)D3 was longer but not significantly different in pregnant women (18.8 days) compared with nonpregnant women (13.6 days). Our pilot study demonstrated that a single oral dose of 25 µg of d3-vitamin D3 can be used to study vitamin D kinetics. Serum DBP concentration is an important predictor of vitamin D kinetics, and more research is needed to fully understand the significance of elevated DBP concentration during pregnancy.


Assuntos
Calcitriol/metabolismo , Colecalciferol/farmacocinética , Gravidez/metabolismo , Administração Oral , Adulto , Calcitriol/sangue , Colecalciferol/administração & dosagem , Colecalciferol/sangue , Deutério/administração & dosagem , Deutério/farmacocinética , Relação Dose-Resposta a Droga , Feminino , Humanos , Projetos Piloto , Gravidez/sangue , Vitamina D/sangue , Adulto Jovem
17.
Sci Transl Med ; 14(635): eabm7853, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35040666

RESUMO

A damaging inflammatory response is implicated in the pathogenesis of severe coronavirus disease 2019 (COVID-19), but mechanisms contributing to this response are unclear. In two prospective cohorts, early non-neutralizing, afucosylated immunoglobulin G (IgG) antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were associated with progression from mild to more severe COVID-19. To study the biology of afucosylated IgG immune complexes, we developed an in vivo model that revealed that human IgG-Fc-gamma receptor (FcγR) interactions could regulate inflammation in the lung. Afucosylated IgG immune complexes isolated from patients with COVID-19 induced inflammatory cytokine production and robust infiltration of the lung by immune cells. In contrast to the antibody structures that were associated with disease progression, antibodies that were elicited by messenger RNA SARS-CoV-2 vaccines were highly fucosylated and enriched in sialylation, both modifications that reduce the inflammatory potential of IgG. Vaccine-elicited IgG did not promote an inflammatory lung response. These results show that human IgG-FcγR interactions regulate inflammation in the lung and define distinct lung activities mediated by the IgG that are associated with protection against, or progression to, severe COVID-19.


Assuntos
COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Vacinas contra COVID-19 , Humanos , Estudos Prospectivos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
18.
bioRxiv ; 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34075376

RESUMO

A damaging inflammatory response is strongly implicated in the pathogenesis of severe COVID-19 but mechanisms contributing to this response are unclear. In two prospective cohorts, early non-neutralizing, afucosylated, anti-SARS-CoV-2 IgG predicted progression from mild, to more severe COVID-19. In contrast to the antibody structures that predicted disease progression, antibodies that were elicited by mRNA SARS-CoV-2 vaccines were low in Fc afucosylation and enriched in sialylation, both modifications that reduce the inflammatory potential of IgG. To study the biology afucosylated IgG immune complexes, we developed an in vivo model which revealed that human IgG-FcγR interactions can regulate inflammation in the lung. Afucosylated IgG immune complexes induced inflammatory cytokine production and robust infiltration of the lung by immune cells. By contrast, vaccine elicited IgG did not promote an inflammatory lung response. Here, we show that IgG-FcγR interactions can regulate inflammation in the lung and define distinct lung activities associated with the IgG that predict severe COVID-19 and protection against SARS-CoV-2. ONE SENTENCE SUMMARY: Divergent early antibody responses predict COVID-19 disease trajectory and mRNA vaccine response and are functionally distinct in vivo .

19.
Infect Immun ; 78(7): 2946-55, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20385751

RESUMO

Vaccines against primary pneumonic plague, a potential bioweapon, must be tested for efficacy in well-characterized nonhuman primate models. Telemetered cynomolgus macaques (Macaca fascicularis) were challenged by the aerosol route with doses equivalent to approximately 100 50% effective doses of Yersinia pestis strain CO92 and necropsied at 24-h intervals postexposure (p.e.). Data for telemetered heart rates, respiratory rates, and increases in the temperature greater than the diurnal baseline values identified the onset of the systemic response at 55 to 60 h p.e. in all animals observed for at least 70 h p.e. Bacteremia was detected at 72 h p.e. by a Yersinia 16S rRNA-specific quantitative reverse transcription-PCR and was detected later by the culture method at the time of moribund necropsy. By 72 h p.e. multilobar pneumonia with diffuse septal inflammation consistent with early bacteremia was established, and all lung tissues had a high bacterial burden. The levels of cytokines or chemokines in serum were not significantly elevated at any time, and only the interleukin-1beta, CCL2, and CCL3 levels were elevated in lung tissue. Inhalational plague in the cynomolgus macaque inoculated by the aerosol route produces most clinical features of the human disease, and in addition the disease progression mimics the disease progression from the anti-inflammatory phase to the proinflammatory phase described for the murine model. Defined milestones of disease progression, particularly the onset of fever, tachypnea, and bacteremia, should be useful for evaluating the efficacy of candidate vaccines.


Assuntos
Doenças dos Macacos/microbiologia , Peste/microbiologia , Animais , Bacteriemia/microbiologia , Temperatura Corporal , Quimiocinas/sangue , Citocinas/sangue , Progressão da Doença , Eletrocardiografia , Feminino , Frequência Cardíaca , Pulmão/microbiologia , Pulmão/patologia , Macaca fascicularis , Masculino , Doenças dos Macacos/imunologia , Doenças dos Macacos/patologia , Doenças dos Macacos/fisiopatologia , Peste/imunologia , Peste/patologia , Peste/fisiopatologia , Taxa Respiratória , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Yersinia pestis/imunologia
20.
Cell Rep ; 31(6): 107642, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402275

RESUMO

Infant mortality from dengue disease is a devastating global health burden that could be minimized with the ability to identify susceptibility for severe disease prior to infection. Although most primary infant dengue infections are asymptomatic, maternally derived anti-dengue immunoglobulin G (IgGs) present during infection can trigger progression to severe disease through antibody-dependent enhancement mechanisms. Importantly, specific characteristics of maternal IgGs that herald progression to severe infant dengue are unknown. Here, we define ≥10% afucosylation of maternal anti-dengue IgGs as a risk factor for susceptibility of infants to symptomatic dengue infections. Mechanistic experiments show that afucosylation of anti-dengue IgGs promotes FcγRIIIa signaling during infection, in turn enhancing dengue virus replication in FcγRIIIa+ monocytes. These studies identify a post-translational modification of anti-dengue IgGs that correlates with risk for symptomatic infant dengue infections and define a mechanism by which afucosylated antibodies and FcγRIIIa enhance dengue infections.


Assuntos
Anticorpos Anti-Idiotípicos/genética , Vírus da Dengue/genética , Dengue Grave/virologia , Feminino , Humanos , Lactente , Recém-Nascido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA