RESUMO
BACKGROUND: Gadolinium (Gd) is an increasingly found lanthanide element in soil; thus, understanding its impact on plant physiology, biochemistry, and molecular responses is crucial. Here, we aimed to provide a comprehensive understanding of Gd (150 mg kg- 1) impacts on guar (Cyamopsis tetragonoloba L.) plant yield and metabolism and whether the symbiotic relationship with arbuscular mycorrhizal fungi (AMF) can mitigate Gd toxicity of soil contamination. RESULTS: AMF treatment improved mineral nutrient uptake and seed yield by 38-41% under Gd stress compared to non-inoculated stressed plants. Metabolic analysis unveiled the defense mechanisms adopted by AMF-treated plants, revealing carbon and nitrogen metabolism adaptations to withstand Gd contamination. This included an increase in the synthesis of primary metabolites, such as total sugar (+ 39% compared to control), soluble sugars (+ 29%), starch (+ 30%), and some main amino acids like proline (+ 57%) and phenylalanine (+ 87%) in the seeds of AMF-treated plants grown under Gd contamination. Furthermore, fatty acid and organic acid profile changes were accompanied by the production of secondary metabolites, including tocopherols, polyamines, phenolic acids, flavones, and anthocyanins. CONCLUSIONS: Overall, the coordinated synthesis of these compounds underscores the intricate regulatory mechanisms underlying plant-AMF interactions and highlights the potential of AMF to modulate plant secondary metabolism for enhanced Gd stress tolerance.
Assuntos
Cyamopsis , Gadolínio , Micorrizas , Simbiose , Micorrizas/fisiologia , Cyamopsis/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Sementes/microbiologia , Sementes/efeitos dos fármacosRESUMO
Nickel (Ni) stress adversely affects plant growth and biomass accumulation, posturing severe menace to crop production and food security. The current study aimed to determine the putative role of sodium nitroprusside (SNP) in mitigating Ni-induced phytotoxicity and identify the underlying defense mechanisms in maize, which are poorly understood. Our findings showed that SNP significantly augmented plant growth, biomass, and photosynthesis-related attributes (Fv/Fm, Fm, qP ETR, and ΦPSII) through diminishing Ni uptake and translocation in root and shoot tissues of maize under Ni stress conditions. In parallel, exogenous SNP substantially relieved maize seedlings from Ni-induced stress by enhancing enzymatic (SOD, CAT, and GPX) and non-enzymatic (phenol and flavonoids) antioxidant defenses and reducing oxidative stress indicators (MDA and H2 O2 ). The results revealed that SNP treatment increased the content of organic osmolyte glycine betaine and the activity of GST, concomitantly with ATP and ionic exchange capacity (including Ca2+ -ATPase and Mg2+ -ATPase), advocating its sufficiency to promote plant growth and avert Ni-induced stress in maize plants. The only exception was the production of organic acids (citric, oxalic, malic, and formic acids), which was reduced as SNP treatment relieved maize seedlings from Ni-induced oxidative damage. The application of SNP also displayed higher expression of defense- and detoxifying-related genes than in control treatments. Together, our data highlighted the mechanism involved in the amelioration of Ni toxicity by SNP; thus, suggesting a potential role of SNP in mitigating the adverse effects of Ni-contaminated soils to boost growth and yield of crop plants, that is, maize.
Assuntos
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Nitroprussiato/farmacologia , Zea mays/metabolismo , Níquel/toxicidade , Plântula/metabolismo , Adenosina Trifosfatases/metabolismo , Expressão GênicaRESUMO
Elevated CO2 (eCO2 ) is one of the climate changes that may benefit plant growth under emerging soil contaminants such as heavy metals. In this regard, the morpho-physiological mechanisms underlying the mitigating impact of eCO2 on beryllium (Be) phytotoxicity are poorly known. Hence, we investigated eCO2 and Be interactive effects on the growth and metabolism of two species from different groups: cereal (oat) and legume (alfalfa). Be stress significantly reduced the growth and photosynthetic attributes in both species, but alfalfa was more susceptible to Be toxicity. Be stress induced reactive oxygen species (ROS) accumulation by increasing photorespiration, subsequently resulting in increased lipid and protein oxidation. However, the growth inhibition and oxidative stress induced by Be stress were mitigated by eCO2 . This could be explained, at least partially, by the increase in organic acids (e.g., citric acid) released into the soil, which subsequently reduced Be uptake. Additionally, eCO2 reduced cellular oxidative damage by reducing photorespiration, which was more significant in alfalfa plants. Furthermore, eCO2 improved the redox status and detoxification processes, including phytochelatins, total glutathione and metallothioneins levels, and glutathione-S-transferase activity in both species, but to a greater extend in alfalfa. In this context, eCO2 also stimulated anthocyanin biosynthesis by accumulating its precursors (phenylalanine, coumaric acid, cinnamic acid, and naringenin) and key biosynthetic enzymes (phenylalanine ammonia-lyase, cinnamate hydroxylase, and coumarate:CoA ligase) mainly in alfalfa plants. Overall, this study explored the mechanistic approach by which eCO2 alleviates the harmful effects of Be. Alfalfa was more sensitive to Be stress than oats; however, the alleviating impact of eCO2 on Be stress was more pronounced in alfalfa.
Assuntos
Dióxido de Carbono , Medicago sativa , Dióxido de Carbono/farmacologia , Dióxido de Carbono/metabolismo , Medicago sativa/metabolismo , Avena/metabolismo , Berílio , Estresse Oxidativo , Plantas/metabolismo , Glutationa/metabolismo , SoloRESUMO
Improving nitrogen (N) use efficiency (NUE) to reduce the application of N fertilisers in a way that benefits the environment and reduces farmers' costs is an ongoing objective for sustainable wheat production. However, whether and how arbuscular mycorrhizal fungi (AMF) affect NUE in wheat is still not well explored. Three independent but complementary experiments were conducted to decipher the contribution of roots and AMF to the N uptake and utilisation efficiency in wheat. We show a temporal complementarity pattern between roots and AMF in shaping NUE of wheat. Pre-anthesis N uptake efficiency mainly depends on root functional traits, but the efficiency to utilise the N taken up during pre-anthesis for producing grains (EN,g ) is strongly affected by AMF, which might increase the uptake of phosphorus and thereby improve photosynthetic carbon assimilation. Root association with AMF reduced the N remobilisation efficiency in varieties with high EN,g ; whilst the overall grain N concentration increased, due to a large improvement in post-anthesis N uptake supported by AMF and/or other microbes. The findings provide evidence for the importance of managing AMF in agroecosystems, and an opportunity to tackle the contradiction between maximising grain yield and protein concentration in wheat breeding.
Assuntos
Micorrizas , Carbono/metabolismo , Grão Comestível/metabolismo , Fertilizantes , Fungos/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Melhoramento Vegetal , Raízes de Plantas/metabolismo , Solo , Triticum/microbiologiaRESUMO
BACKGROUND: The present study aims to study the effects of biofertilizers potential of Arbuscular Mycorrhizal Fungi (AMF) and Bradyrhizobium japonicum (B. japonicum) strains on yield and growth of drought stressed soybean (Giza 111) plants at early pod stage (50 days from sowing, R3) and seed development stage (90 days from sowing, R5). RESULTS: Highest plant biomass, leaf chlorophyll content, nodulation, and grain yield were observed in the unstressed plants as compared with water stressed-plants at R3 and R5 stages. At soil rhizosphere level, AMF and B. japonicum treatments improved bacterial counts and the activities of the enzymes (dehydrogenase and phosphatase) under well-watered and drought stress conditions. Irrespective of the drought effects, AMF and B. japonicum treatments improved the growth and yield of soybean under both drought (restrained irrigation) and adequately-watered conditions as compared with untreated plants. The current study revealed that AMF and B. japonicum improved catalase (CAT) and peroxidase (POD) in the seeds, and a reverse trend was observed in case of malonaldehyde (MDA) and proline under drought stress. The relative expression of the CAT and POD genes was up-regulated by the application of biofertilizers treatments under drought stress condition. Interestingly a reverse trend was observed in the case of the relative expression of the genes involved in the proline metabolism such as P5CS, P5CR, PDH, and P5CDH under the same conditions. The present study suggests that biofertilizers diminished the inhibitory effect of drought stress on cell development and resulted in a shorter time for DNA accumulation and the cycle of cell division. There were notable changes in the activities of enzymes involved in the secondary metabolism and expression levels of GmSPS1, GmSuSy, and GmC-INV in the plants treated with biofertilizers and exposed to the drought stress at both R3 and R5 stages. These changes in the activities of secondary metabolism and their transcriptional levels caused by biofertilizers may contribute to increasing soybean tolerance to drought stress. CONCLUSIONS: The results of this study suggest that application of biofertilizers to soybean plants is a promising approach to alleviate drought stress effects on growth performance of soybean plants. The integrated application of biofertilizers may help to obtain improved resilience of the agro ecosystems to adverse impacts of climate change and help to improve soil fertility and plant growth under drought stress.
Assuntos
Bradyrhizobium/química , Secas , Fertilizantes/análise , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Micorrizas/química , Glycine max/química , Estresse FisiológicoRESUMO
The present study aimed to evaluate the effect of Bacillus amyloliquefaciens and/or Arbuscular Mycorrhizal Fungi (AMF) as natural biofertilizers on biomass, yield, and seed nutritive quality of soybean (Giza 111). The conditions investigated include a well-watered (WW) control and irrigation withholding at the seed development stage (R5, after 90 days from sowing) (DS). Co-inoculation with B. amyloliquefaciens and AMF, resulted in the highest plant biomass and yield under WW and DS conditions. The nuclear DNA content analysis suggested that co-inoculation with B. amyloliquefaciens and AMF decreased the inhibition of drought stress on both the size and granularity of seed cells, which were comparable to the normal level. The single or co-inoculation with B. amyloliquefaciens and AMF increased the primary metabolites content and alleviated the drought-induced reduction in soluble sugars, lipids, protein and oil contents. Plant inoculation induced the expression of genes involved in lipid and protein biosynthesis, whereas an opposite trend was observed for genes involved in lipid and protein degradation, supporting the observed increase in lipid and protein content. Plant inoculated with B. amyloliquefaciens showed the highest α-amylase and ß-amylase activities, indicating improved osmolyte (soluble sugar) synthesis, particularly under drought. Interestingly, single or co-inoculation further strengthen the positive effect of drought on the antioxidant and osmoprotectant levels, i.e. phenol, flavonoid, glycine betaine contents, and glutathione-S-transferase (GST) activity. As a result of stress release, there was a decrease in the level of stress hormones (abscisic acid, ABA) and an increase in gibberellin (GA), trans-zeatin-riboside (ZR), and indole acetic acid (IAA) in the seeds of inoculated plants. Additionally, the ATP content, hydrolytic activities of plasma membrane H+ -ATPase, Ca2+ -ATPase, and Mg2+ -ATPase were also increased by the inoculation.
Assuntos
Bacillus amyloliquefaciens , Micorrizas , Secas , Raízes de Plantas , Sementes , Glycine maxRESUMO
BACKGROUND: Jasmonic acid (JA) is an important molecule that has a regulatory effect on many physiological processes in plant growth and development under abiotic stress. This study investigated the effect of 60 µmol L-1 of JA in seed priming (P) at 15 °C in darkness for 24 h, foliar application (F), and/or their combination effect (P + F) on two soybean cultivars - 'Nannong 99-6' (salt tolerant) and 'Lee 68' (salt sensitive) - under salinity stress (100 mmol L-1 sodium chloride (NaCl)). RESULTS: Salinity stress reduced seedling growth and biomass compared with that in the control condition. Priming and foliar application with JA and/or their combination significantly improved water potential, osmotic potential, water use efficiency, and relative water content of both cultivars under salinity stress. Similarly, seed priming with JA, foliar application of JA, and/or their combination significantly improved the following properties under salinity stress compared with the untreated seedlings: net photosynthetic rate by 68.03%, 59.85%, and 76.67% respectively; transpiration rate by 74.85%, 55.10%, and 80.26% respectively; stomatal conductance by 69.88%, 78.25%, and 26.24% respectively; intercellular carbon dioxide concentration by 61.64%, 40.06%, and 65.79% respectively; and total chlorophyll content by 47.41%, 41.02%, and 55.73% respectively. Soybean plants primed, sprayed with JA, or treated with their combination enhanced the chlorophyll fluorescence, which was damaged by salinity stress. JA treatments improved abscisic acid, gibberellic acid, and JA levels by 60.57%, 62.50% and 52.25% respectively under salt stress compared with those in the control condition. The transcriptional levels of the FeSOD, POD, CAT, and APX genes increased significantly in the NaCl-stressed seedlings irrespective of JA treatments. Moreover, JA treatment resulted in a reduction of sodium ion concentration and an increase of potassium ion concentrations in the leaf and root of both cultivars regardless of salinity stress. Monodehydroascorbate reductase, dehydroascorbate reductase, and proline contents decreased in the seedlings treated with JA under salinity stress, whereas the ascorbate content increased with JA treatment combined with NaCl stress. CONCLUSION: The application of 60 µmol L-1 JA improved plant growth by regulating the interaction between plant hormones and hydrogen peroxide, which may be involved in auxin signaling and stomatal closure under salt stress. These methods could efficiently protect early seedlings and alleviate salt stress damage and provide possibilities for use in improving soybean growth and inducing tolerance against excessive soil salinity. © 2020 Society of Chemical Industry.
Assuntos
Ciclopentanos/farmacologia , Glycine max/fisiologia , Oxilipinas/farmacologia , Folhas de Planta/efeitos dos fármacos , Sementes/efeitos dos fármacos , Clorofila/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Potássio/metabolismo , Estresse Salino/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacosRESUMO
This study was conducted in order to determine the effect of priming with γ-aminobutyric acid (GABA) at 0.5 mM on rice (Oryza sativa L.) seed germination under osmotic stress (OS) induced by polyethylene glycol (30 g/L PEG 6000); and salinity stress (S, 150 mM NaCl) and their combination (OS+S). Priming with GABA significantly alleviated the detrimental effects of OS, S and OS+S on seed germination and seedling growth. The photosynthetic system and water relation parameters were improved by GABA under stress. Priming treatment significantly increased the GABA content, sugars, protein, starch and glutathione reductase. GABA priming significantly reduced Na+ concentrations, proline, free radical and malonaldehyde and also significantly increased K+ concentration under the stress condition. Additionally, the activities of antioxidant enzymes, phenolic metabolism-related enzymes, detoxification-related enzymes and their transcription levels were improved by GABA priming under stress. In the GABA primed-plants, salinity stress alone resulted in an obvious increase in the expression level of Calcineurin B-like Protein-interacting protein Kinases (CIPKs) genes such as OsCIPK01, OsCIPK03, OsCIPK08 and OsCIPK15, and osmotic stress alone resulted in obvious increase in the expression of OsCIPK02, OsCIPK07 and OsCIPK09; and OS+S resulted in a significant up-regulation of OsCIPK12 and OsCIPK17. The results showed that salinity, osmotic stresses and their combination induced changes in cell ultra-morphology and cell cycle progression resulting in prolonged cell cycle development duration and inhibitory effects on rice seedlings growth. Hence, our findings suggested that the high tolerance to OS+S is closely associated with the capability of GABA priming to control the reactive oxygen species (ROS) level by inducing antioxidant enzymes, secondary metabolism and their transcription level. This knowledge provides new evidence for better understanding molecular mechanisms of GABA-regulating salinity and osmotic-combined stress tolerance during rice seed germination and development.
Assuntos
Oryza/metabolismo , Pressão Osmótica , Oxirredução , Estresse Oxidativo , Salinidade , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo , Oryza/genética , Fenóis/metabolismo , Fotossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Plântula/genética , Plântula/metabolismo , Plântula/ultraestrutura , Estresse Fisiológico , Água/metabolismoRESUMO
Nodule symbiosis is an energetic process that demands a tremendous carbon (C) cost, which massively increases in responses to environmental stresses. Notably, most common respiratory pathways (e.g., glycolysis and Krebs cycle) that sustain nitrogenase activity and subsequent nitrogen (N) assimilation (amino acid formation) display a noncyclic mode of C flux. In such circumstances, the nodule's energy charge could markedly decrease, leading to a lower symbiotic activity under stresses. The host plant then attempts to induce alternative robust metabolic pathways to minimize the C expenditure and compensate for the loss in respiratory substrates. GABA (γ-aminobutyric acid) shunt appears to be among the highly conserved metabolic bypass induced in responses to stresses. Thus, it can be suggested that GABA, via its primary biosynthetic pathway (GABA shunt), is simultaneously induced to circumvent stress-susceptible decarboxylating portion of the Krebs cycle and to replenish symbiosome with energy and C skeletons for enhancing nitrogenase activity and N assimilation besides the additional C costs expended in the metabolic stress acclimations (e.g., biosynthesis of secondary metabolites and excretion of anions). The GABA-mediated C/N balance is strongly associated with interrelated processes, including pH regulation, oxygen (O2) protection, osmoregulation, cellular redox control, and N storage. Furthermore, it has been anticipated that GABA could be implicated in other functions beyond its metabolic role (i.e., signaling and transport). GABA helps plants possess remarkable metabolic plasticity, which might thus assist nodules in attenuating stressful events.
Assuntos
Fabaceae , Fabaceae/metabolismo , Simbiose/fisiologia , Nitrogênio/metabolismo , Carbono/metabolismo , Ácido gama-Aminobutírico/metabolismo , Verduras , Plantas/metabolismo , Homeostase , Nitrogenase/metabolismo , Fixação de Nitrogênio/fisiologia , Nódulos Radiculares de PlantasRESUMO
Nanocomposites are emerging as a new generation of materials that can be used to combat water pollution. Zeolite-based nanocomposites consisting of combinations of metals, metal oxides, carbon materials, and polymers are particularly effective for separating and adsorbing multiple contaminants from water. This review presents the potential of zeolite-based nanocomposites for eliminating a range of toxic organic and inorganic substances, dyes, heavy metals, microplastics, and ammonia from water. The review emphasizes that nanocomposites offer enhanced mechanical, catalytic, adsorptive, and porosity properties necessary for sustainable water purification techniques compared to individual composite materials. The adsorption potential of several zeolite-metal/metal oxide/polymer-based composites for heavy metals, anionic/cationic dyes, microplastics, ammonia, and other organic contaminants ranges between approximately 81 and over 99%. However, zeolite substrates or zeolite-amended soil have limited benefits for hyperaccumulators, which have been utilized for phytoremediation. Further research is needed to evaluate the potential of zeolite-based composites for phytoremediation. Additionally, the development of nanocomposites with enhanced adsorption capacity would be necessary for more effective removal of pollutants.
Assuntos
Metais Pesados , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Águas Residuárias , Zeolitas/química , Amônia , Microplásticos , Plásticos , Biodegradação Ambiental , Poluentes Químicos da Água/análise , Metais Pesados/análise , Óxidos , Água , Polímeros , Nanocompostos/química , Corantes , Adsorção , Purificação da Água/métodosRESUMO
The combination of fish emulsion (FE) and the actinobacterial isolate, Streptomyces griseorubens UAE1 (Sg) capable of producing plant growth regulators (PGRs) and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, was evaluated on mangrove (Avicennia marina) in the United Arab Emirates. Under greenhouse and field conditions, sediments amended with the biostimulant FE effectively enhanced mangrove growth compared to those inoculated with Sg only. Plant growth promotion by Sg was more pronounced in the presence of FE (+FE/+Sg) than in individual applications. Our data showed that Sg appeared to use FE as a source of nutrients and precursors for plant growth promotion. Thus, in planta PGR levels following the combined +FE/+Sg were significantly induced. This is the first report in the field of marine agriculture that uses FE as a nutrient base for soil microorganisms to promote mangrove growth. This study will support mangrove restoration along the Arabian Gulf coastline as a nature-based solution to changing climate and economic activities.
Assuntos
Actinobacteria , Avicennia , Emulsões , Desenvolvimento Vegetal , Bactérias , Raízes de PlantasRESUMO
Sodium nitroprusside (SNP) is a potent nitric oxide (NO) donor that enhances plant tolerance to various abiotic stresses. This research aims to assess the effect of SNP application on rice seedlings subjected to individual and combined exposure to two abiotic stresses viz., low-temperature (LT) and chromium (Cr). Exposure to LT, Cr, and LT+Cr caused severe oxidative damage by stimulating greater production and accumulation of reactive oxygen species (ROS) leading to lipid peroxidation and cell membrane instability. The combined LT+CR stress more intensly increased the cellular oxidative stress and excessive Cr uptake that in turn deteriorated the chlorophyll pigments and photosynthesis, as well as effected the level of tetrapyrrole biosynthesis in rice plants. The reduction in rice seedling growth was more obvious under LT+Cr treatment than their individual effects. The exogenous application of SNP diminished the toxic impact of LT and Cr stress. This was attributed to the positive role of SNP in regulating the endogenous NO levels, free amino acids (FAAs) contents, tetrapyrrole biosynthesis and antioxidants. Consequently, SNP-induced NO decreased photorespiration, ROS generation, lipid peroxidation, and electrolyte leakage. Moreover, exogenous SNP diminished the Cr uptake and accumulation by modulating the ionic homeostasis and strengthening the heavy metals detoxification mechanism, thus improving plant height, biomass and photosynthetic indexes. Essentially, SNP boosts plant tolerance to LT and Cr stress by regulating antioxidants, detoxification mechanism, and the plant's physio-biochemical. Hence, applying SNP is an effective method for boosting rice plant resilience and productivity in the face of escalating environmental stresses and pollutants.
Assuntos
Antioxidantes , Cromo , Temperatura Baixa , Homeostase , Óxido Nítrico , Oryza , Oxirredução , Fotossíntese , Oryza/metabolismo , Oryza/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Homeostase/efeitos dos fármacos , Cromo/farmacologia , Oxirredução/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Nitroprussiato/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacosRESUMO
It is crucial to clarify the physiological responses of wheat (T. aestivum) plants to source-sink manipulation and assimilation transportation under drought stress during domestication of dryland wheat. In this research, a two-year field experiment was conducted using nine wheat cultivars in a semiarid site of northwest China. The source-sink manipulation treatments including defoliation of flag leaves and 50% removal of ears were applied at the anthesis stage under two levels of drought stress conditions i.e. progressive water supply (PWS) and rainfed drought treatment (RDT). Our results indicated that drought stress reduced the dry weight of leaves, sheaths and stems, as well as caused a significant yield reduction. High ploidy wheat exhibits a greater capacity to sustain higher grain yields when subjected to drought stress, primarily due to its stronger buffer capacity between source supply and sink demand. All wheat species with different ploidy levels had a certain degree of source limitation and sink restriction. During the domestication of wheat, the type of source and sink might be ploidy-dependent with progressive water deficit, but similar interactive relationships. The source-sink ratio of tetraploid species was the largest, while that of hexaploid species was the lowest.
Assuntos
Triticum , Água , Triticum/genética , Domesticação , Grão Comestível , Folhas de Planta/fisiologiaRESUMO
Magnesium oxide nanoparticles (MgO NPs) have great potential to enhance the crop productivity and sustainability of agriculture. Still, a thorough understanding is lacking about its essentiality or toxicity and precise dose for the safe cultivation of oilseed crops. Thus, we assessed the dual effects of MgO NPs (control, 5, 10, 20, 40, 80, and 200 mg/L) on the seed germination, growth performance, photosynthesis, total soluble protein, total carbohydrates, oxidative stress markers (hydrogen peroxide as H2O2 and superoxide anion as O2â¢â), lipid peroxidation as MDA, and antioxidant defence machinery (SOD, CAT, APX, and GR activities, and GSH levels) of seven different oilseeds (Brassica napus L.) cultivars (ZY 758, ZD 649, ZD 635, ZD 619, GY 605, ZD 622, and ZD 630). Our findings revealed that low doses of MgO NPs (mainly at 10 mg/L) markedly boosted the seed germination, plant growth (shoot and root lengths) (15â22%), and biomass (fresh and dry) (11â19%) by improving the levels of photosynthetic pigments (14â27%), net photosynthetic rate, stomatal conductance, photosynthetic efficiency (Fv/Fm), total soluble protein and total carbohydrates (16â36%), antioxidant defence, and reducing the oxidative stress in B. napus tissues. Among all B. napus cultivars, these beneficial effects of MgO NPs were pronounced in ZD 635. ile, elevated levels of MgO NPs (particularly at 200 mg/L) induced oxidative stress, impaired antioxidant scavenging potential, photosynthetic inhibition, protein oxidation, and carbohydrate degradation and lead to inhibit the plant growth attributes. These inhibitory effects were more pronounced in ZD 622. Collectively, low-dose MgO NPs reinforced the Mg contents, protected the plant growth, photosynthesis, total soluble carbohydrates, enzyme activities, and minimized the oxidative stress. While, the excessive MgO NP levels impaired the above-reported traits. Overall, ZD 622 was highly susceptible to MgO NP toxicity and ZD 635 was found most tolerant to MgO NP toxicity.
Assuntos
Brassica napus , Nanopartículas , Antioxidantes/metabolismo , Óxido de Magnésio/farmacologia , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , CarboidratosRESUMO
Arid regions can benefit from using native desert plants, which require minimal freshwater and can aid in remediating soil phytotoxic metals (PTMs) from traffic emissions. In this study, we assessed the ability of three native desert plants-Pennisetum divisum, Tetraena qatarensis, and Brassica tournefortii-to accumulate phytotoxic metals (PTMs) in their different plant organs, including leaves, stems, and roots/rhizomes. The PTMs were analyzed in soil and plant samples collected from Dubai, United Arab Emirates (UAE). The results indicated significantly higher levels of PTMs on the soil surface than the subsurface layer. Brassica exhibited the highest concentrations of Fe and Zn, measuring 566.7 and 262.8 mg kg-1, respectively, while Tetraena accumulated the highest concentration of Sr (1676.9 mg kg-1) in their stems. In contrast, Pennisetum recorded the lowest concentration of Sr (21.0 mg kg-1), while Tetraena exhibited the lowest concentrations of Fe and Zn (22.5 and 30.1 mg kg-1) in their leaves. The roots of Pennisetum, Brassica, and Tetraena demonstrated the potential to accumulate Zn from the soil, with concentration factors (CF) of 1.75, 1.09, and 1.09, respectively. Moreover, Brassica exhibited the highest CF for Sr, measuring 2.34. Pennisetum, however, could not translocate PTMs from its rhizomes to other plant organs, as indicated by a translocation factor (TF) of 1. In contrast, Brassica effectively translocated the studied PTMs from its roots to the stem and leaves (except for Sr in the leaves). Furthermore, Pennisetum exclusively absorbed Zn from the soil into its leaves and stems, with an enrichment factor (EF) greater than 1. Brassica showed the ability to uptake the studied PTMs in its stem and leaves (except for Fe), while Tetraena primarily absorbed Sr and Zn into its stems. Based on the CF and TF results, Pennisetum appears to be a suitable species for phytostabilization of both Fe and Zn, while Brassica is well-suited for Sr and Zn polluted soils. Tetraena shows potential for Zn phytoremediation. These findings suggest that these plants are suitable for PTMs phytoextraction. Furthermore, based on the EF results, these plants can efficiently sequester PTMs.
Assuntos
Biodegradação Ambiental , Cidades , Poluentes do Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Pennisetum/metabolismo , Clima Desértico , Solo/química , Raízes de Plantas/metabolismo , Folhas de Planta/metabolismo , Brassica/metabolismo , Brassica/crescimento & desenvolvimento , Metais Pesados/metabolismo , Metais Pesados/análiseRESUMO
The demand for crops production continues to intensify with the rapid increase in population. Agricultural crops continue to encounter abiotic and biotic stresses, which can substantially hamper their productivity. Numerous strategies have been focused to tackle the abiotic and biotic stress factors in various plants. Nanotechnology has displayed great potential to minimize the phytotoxic impacts of these environmental constraints. Copper (Cu)-based nanoparticles (NPs) have displayed beneficial effects on plant growth and stress tolerance. Cu-based NPs alone or in combination with plant growth hormones or microorganisms have been documented to induce plant tolerance and mitigate abiotic or biotic stresses in different plants. In this review, we have comprehensively discussed the uptake and translocation of Cu-based NPs in plants, and beneficial roles in improving the plant growth and development at various growth stages. Moreover, we have discussed how Cu-based NPs mechanistically modulate the physiological, biochemical, metabolic, cellular, and metabolic functions to enhance plant tolerance against both biotic (viruses, bacterial and fungal diseases, etc.) and abiotic stresses (heavy metals or metalloids, salt, and drought stress, etc.). We elucidated recent advancements, knowledge gaps, and recommendations for future research. This review would help plant and soil scientists to adapt Cu-based novel strategies such as nanofertilizers and nanopesticides to detoxify the abiotic or biotic stresses. These outcomes may contribute to the promotion of healthy food production and food security, thus providing new avenues for sustainable agriculture production.
Assuntos
Cobre , Produtos Agrícolas , Estresse Fisiológico , Nanopartículas , Nanopartículas Metálicas/toxicidadeRESUMO
Introduction: Salinity negatively affects maize productivity. However, calcium lignosulfonate (CLS) could improve soil properties and maize productivity. Methods: In this study, we evaluated the effects of CLS application on soil chemical properties, plant physiology and grain quality of maize under salinity stress. Thus, this experiment was conducted using three CLS application rates, CLS0, CLS5, and CLS10, corresponding to 0%, 5%, and 10% of soil mass, for three irrigation water salinity (WS) levels WS0.5, WS2.5, and WS5.5 corresponding to 0.5 and 2.5 and 5.5 dS/m, respectively. Results and discussion: Results show that the WS0.5 × CLS10 combination increased potassium (K 0.167 g/kg), and calcium (Ca, 0.39 g/kg) values while reducing the sodium (Na, 0.23 g/kg) content in soil. However, the treatment WS5.5 × CLS0 decreased K (0.120 g/kg), and Ca (0.15 g/kg) values while increasing Na (0.75 g/kg) content in soil. The root activity was larger in WS0.5 × CLS10 than in WS5.5 × CLS0, as the former combination enlarged K and Ca contents in the root while the latter decreased their values. The leaf glutamine synthetase (953.9 µmol/(g.h)) and nitrate reductase (40.39 µg/(g.h)) were higher in WS0.5 × CLS10 than in WS5.5 × CLS0 at 573.4 µmol/(g.h) and 20.76 µg/(g.h), leading to the improvement in cell progression cycle, as revealed by lower malonaldehyde level (6.57 µmol/g). The K and Ca contents in the leaf (881, 278 mg/plant), stem (1314, 731 mg/plant), and grains (1330, 1117 mg/plant) were greater in WS0.5 × CLS10 than in WS5.5 × CLS0 at (146, 21 mg/plant), (201, 159 mg/plant) and (206, 157 mg/plant), respectively. Therefore, the maize was more resistance to salt stress under the CLS10 level, as a 7.34% decline in yield was noticed when salinity surpassed the threshold value (5.96 dS/m). The protein (13.6 %) and starch (89.2 %) contents were greater in WS0.5 × CLS10 than in WS5.5 × CLS0 (6.1 %) and (67.0 %), respectively. This study reveals that CLS addition can alleviate the adverse impacts of salinity on soil quality and maize productivity. Thus, CLS application could be used as an effective soil amendment when irrigating with saline water for sustainable maize production.
RESUMO
The widespread use of pharmaceuticals, including paracetamol, has raised concerns about their impact on the environment and non-target species. The aim of this study was to investigate the biochemical and molecular responses of Spinacia oleracea (spinach) to high paracetamol concentrations in order to understand the plant's stress responses and underlying mechanisms. Under controlled conditions, spinach plants were exposed to different paracetamol concentrations (0, 50, 100, and 200 mg/L). The study evaluated the impact of paracetamol exposure on biochemical parameters such as oxidative stress markers (H2O2, MDA), activities of antioxidant enzymes (APX, CAT, GPOD, SOD), levels of non-enzymatic components (phenolics and flavonoids), and phytohormones (ABA, SA, and IAA). Furthermore, the study assessed molecular impacts by analyzing stress-related genetic variation and alterations in the gene expression of the antioxidant enzymes. Results showed that paracetamol exposure significantly increased oxidative stress in spinach, which was evident through the elevated H2O2 and MDA levels. However, the antioxidant defense mechanisms were activated to counteract this effect, as evidenced by increased activity of antioxidant enzymes and higher phenolics and flavonoid levels. Moreover, induction in the phytohormone levels indicated a stress response in paracetamol-treated plants compared to control plants. RAPD analysis revealed polymorphism indicating the DNA damage, and the Real-time qRT-PCR method showed significant upregulation of stress-responsive genes, highlighting the severe impact of paracetamol at the molecular level. The study concludes that high paracetamol concentrations pose a significant threat to spinach growth by affecting both biochemical and molecular processes. These findings underscore the need for strict environmental management practices to mitigate the possible impact of continuous release, accumulation, and long-term exposure of pharmaceutical contaminants to the environment and implement policies to reduce pharmaceutical pollutants to preserve ecological health and biodiversity.
RESUMO
Anise (Pimpinella anisum L.) seeds have various nutritional and therapeutic benefits and are thus considered a valuable addition to animal and human health. Hence, in this study, we aimed to induce the nutritive and biological value of anise seeds. To this end, the potential biofortification effect of the endophytic Actinomycetota sp. JW0824 strain, isolated during the fall of 2023 from the medicinal plant Achyranthes aspera, exhibiting natural distribution in the Jazan region of Saudi Arabia, was investigated in four varieties of anise seeds from Egypt, Tunisia, Syria, and Morocco. Results revealed significant increments (p < 0.05) in the seed dry weight percentage (DW%) and oil yields. In line with increased biomass accumulation, the metabolism of the primary and secondary metabolites was increased. There were differential increases in proteins, sugars, flavonoids, alkaloids, phenols, vitamins (e.g., ß-carotene, ascorbic acid), and essential oil components (e.g., phenylpropanoids and monoterpenes), along with their precursor phenylalanine. Consistently, the activity of L-phenylalanine aminolyase (PAL) was increased in the Egyptian and Tunisian varieties at 83.88% and 77.19%, respectively, while 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS) activity increased in all varieties, with a significant 179.31% rise in the Egyptian variety. These findings highlight the beneficial effects of Actinomycetota sp. JW0824 as a bioinoculant for anise seeds, suggesting its potential application in agricultural practices to improve seed yield and quality. Further field trials are recommended to assess the commercial viability of this endophyte for enhancing anise seed production and potentially benefiting other plant species.
RESUMO
Rare earth elements (REE) like Gadolinium (Gd), are increasingly used in industry and agriculture and this is concomitant with the increasingly leaking of Gd into the environment. Under a certain threshold concentration, REE can promote plant growth, however, beyond this concentration, they exert negative effects on plant growth. Moreover, the effect of Gd on plants growth and metabolism under a futuristic climate with increasingly atmospheric CO2 has not yet been studied. To this end, we investigated the effect of soil contamination with Gd (150 mg/kg soil) on the growth, carbohydrates, proline, and anthocyanin metabolism of Medicago plants grown under ambient (aCO2, 410 ppm) or elevated CO2 (eCO2, 720 ppm) concentration. Gd negatively affected the growth and photosynthesis of plants and imposed oxidative stress i.e., increased H2O2 and lipid peroxidation (MDA) level. As defense lines, the level and metabolism of osmoprotectants (soluble sugars and proline) and antioxidants (phenolics, anthocyanins, and tocopherols) were increased under Gd treatment. High CO2 positively affected the growth and metabolism of Medicago plants. Moreover, eCO2 mitigated the negative impacts of Gd on Medicago growth. It further induced the levels of osmoprotectants and antioxidants. In line with increased proline and anthocyanins, their metabolic enzymes (e.g. OAT, P5CS, PAL, and CS) were also increased. This study advances our understanding of how Gd adversely affects Medicago plant growth and metabolism. It also sheds light on the biochemical mechanisms underlying the Gd stress-reducing impact of eCO2.