Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 552(7684): 225-229, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29239353

RESUMO

Antarctica's continental-scale ice sheets have evolved over the past 50 million years. However, the dearth of ice-proximal geological records limits our understanding of past East Antarctic Ice Sheet (EAIS) behaviour and thus our ability to evaluate its response to ongoing environmental change. The EAIS is marine-terminating and grounded below sea level within the Aurora subglacial basin, indicating that this catchment, which drains ice to the Sabrina Coast, may be sensitive to climate perturbations. Here we show, using marine geological and geophysical data from the continental shelf seaward of the Aurora subglacial basin, that marine-terminating glaciers existed at the Sabrina Coast by the early to middle Eocene epoch. This finding implies the existence of substantial ice volume in the Aurora subglacial basin before continental-scale ice sheets were established about 34 million years ago. Subsequently, ice advanced across and retreated from the Sabrina Coast continental shelf at least 11 times during the Oligocene and Miocene epochs. Tunnel valleys associated with half of these glaciations indicate that a surface-meltwater-rich sub-polar glacial system existed under climate conditions similar to those anticipated with continued anthropogenic warming. Cooling since the late Miocene resulted in an expanded polar EAIS and a limited glacial response to Pliocene warmth in the Aurora subglacial basin catchment. Geological records from the Sabrina Coast shelf indicate that, in addition to ocean temperature, atmospheric temperature and surface-derived meltwater influenced East Antarctic ice mass balance under warmer-than-present climate conditions. Our results imply a dynamic EAIS response with continued anthropogenic warming and suggest that the EAIS contribution to future global sea-level projections may be under-estimated.


Assuntos
Congelamento , Camada de Gelo/química , Temperatura , Regiões Antárticas , Diatomáceas/isolamento & purificação , Foraminíferos/isolamento & purificação , Fósseis , Aquecimento Global/estatística & dados numéricos , Camada de Gelo/parasitologia
2.
Proc Natl Acad Sci U S A ; 113(13): 3419-21, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26987666
3.
Nat Commun ; 14(1): 2714, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202379

RESUMO

Antarctica's continental margins pose an unknown submarine landslide-generated tsunami risk to Southern Hemisphere populations and infrastructure. Understanding the factors driving slope failure is essential to assessing future geohazards. Here, we present a multidisciplinary study of a major submarine landslide complex along the eastern Ross Sea continental slope (Antarctica) that identifies preconditioning factors and failure mechanisms. Weak layers, identified beneath three submarine landslides, consist of distinct packages of interbedded Miocene- to Pliocene-age diatom oozes and glaciomarine diamicts. The observed lithological differences, which arise from glacial to interglacial variations in biological productivity, ice proximity, and ocean circulation, caused changes in sediment deposition that inherently preconditioned slope failure. These recurrent Antarctic submarine landslides were likely triggered by seismicity associated with glacioisostatic readjustment, leading to failure within the preconditioned weak layers. Ongoing climate warming and ice retreat may increase regional glacioisostatic seismicity, triggering Antarctic submarine landslides.

4.
Science ; 370(6517): 662-663, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33154126
5.
Science ; 305(5691): 1766-70, 2004 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-15375266

RESUMO

Magnesium/calcium data from Southern Ocean planktonic foraminifera demonstrate that high-latitude (approximately 55 degrees S) southwest Pacific sea surface temperatures (SSTs) cooled 6 degrees to 7 degrees C during the middle Miocene climate transition (14.2 to 13.8 million years ago). Stepwise surface cooling is paced by eccentricity forcing and precedes Antarctic cryosphere expansion by approximately 60 thousand years, suggesting the involvement of additional feedbacks during this interval of inferred low-atmospheric partial pressure of CO2 (pCO2). Comparing SSTs and global carbon cycling proxies challenges the notion that episodic pCO2 drawdown drove this major Cenozoic climate transition. SST, salinity, and ice-volume trends suggest instead that orbitally paced ocean circulation changes altered meridional heat/vapor transport, triggering ice growth and global cooling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA