Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Cell Mol Med ; 28(2): e18049, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37987145

RESUMO

Derangement of redox condition largely contributes to cardiac ischemia/reperfusion (I/R) injury. FoxO1 is a transcription factor which transcripts a series of antioxidants to antagonize I/R-induced oxidative myocardial damage. N-n-butyl haloperidol iodide (F2 ) is a derivative derived from haloperidol structural modification with potent capacity of inhibiting oxidative stress. This investigation intends to validate whether cardio-protection of F2 is dependent on FoxO1 using an in vivo mouse I/R model and if so, to further elucidate the molecular regulating mechanism. This study initially revealed that F2 preconditioning led to a profound reduction in I/R injury, which was accompanied by attenuated oxidative stress and upregulation of antioxidants (SOD2 and catalase), nuclear FoxO1 and phosphorylation of AMPK. Furthermore, inactivation of FoxO1 with AS1842856 abolished the cardio-protective effect of F2 . Importantly, we identified F2 -mediated nuclear accumulation of FoxO1 is dependent on AMPK, as blockage of AMPK with compound C induced nuclear exit of FoxO1. Collectively, our data uncover that F2 pretreatment exerts significant protection against post ischemic myocardial injury by its regulation of AMPK/FoxO1 pathway, which may provide a new avenue for treating ischemic disease.


Assuntos
Proteínas Quinases Ativadas por AMP , Traumatismo por Reperfusão , Camundongos , Animais , Haloperidol/farmacologia , Miocárdio , Transdução de Sinais , Antioxidantes/farmacologia
2.
J Cardiovasc Pharmacol ; 83(6): 602-611, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579307

RESUMO

ABSTRACT: N -n-butyl haloperidol iodide (F 2 ), a derivative of haloperidol developed by our group, exhibits potent antioxidative properties and confers protection against cardiac ischemia/reperfusion (I/R) injury. The protective mechanisms by which F 2 ameliorates I/R injury remain obscure. The activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription factor transactivating many antioxidative genes, also attenuates I/R-induced myocardial damage. The present study investigated whether the cardioprotective effect of F 2 depends on Nrf2 using a mouse heart I/R model. F 2 (0.1, 0.2 or 0.4 mg/kg) or vehicle was intravenously injected to mice 5 minutes before reperfusion. Systemic administration of 0.4 mg/kg F 2 led to a significant reduction in I/R injury, which was accompanied by enhanced activation of Nrf2 signaling. The cardioprotection conferred by F 2 was largely abrogated in Nrf2-deficient mice. Importantly, we found F 2 -induced activation of Nrf2 is silent information regulator of transcription 1 (SIRT1)-dependent, as pharmacologically inhibiting SIRT1 by the specific inhibitor EX527 blocked Nrf2 activation. Moreover, F 2 -upregulated expression of SIRT1 was also Nrf2-dependent, as Nrf2 deficiency inhibited SIRT1 upregulation. These results indicate that SIRT1-Nrf2 signaling loop activation is indispensable for the protective effect of F 2 against myocardial I/R injury and may provide new insights for the treatment of ischemic heart disease.


Assuntos
Haloperidol , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Sirtuína 1 , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Sirtuína 1/metabolismo , Sirtuína 1/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Transdução de Sinais/efeitos dos fármacos , Haloperidol/farmacologia , Haloperidol/análogos & derivados , Masculino , Camundongos Knockout , Modelos Animais de Doenças , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/enzimologia , Antioxidantes/farmacologia , Miocárdio/metabolismo , Miocárdio/patologia
3.
J Cell Mol Med ; 26(15): 4216-4229, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35791579

RESUMO

Myocardial ischemia/reperfusion injury (MI/RI) is the main cause of deaths in the worldwide, leading to severe cardiac dysfunction. Resveratrol (RSV) is a polyphenol plant-derived compound. Our study aimed to elucidate the underlying molecular mechanism of preconditioning RSV in protecting against MI/RI. Mice were ligated and re-perfused by the left anterior descending branch with or without RSV (30 mg/kg·ip) for 7 days. Firstly, we found that RSV pretreatment significantly alleviated myocardial infarct size, improved cardiac function and decreased oxidative stress. Furthermore, RSV activated p-AMPK and SIRT1, ameliorated inflammation including the level of TNF-α and IL-1ß, and promoting autophagy level. Moreover, neonatal rat ventricular myocytes (NRVMs) and H9c2 cells with knockdown the expression of AMPK, SIRT1 or FOXO1 were used to uncover the underlying molecular mechanism for the cardio-protection of RSV. In NRVMs, RSV increased cellular viability, decreased LDH release and reduced oxidative stress. Importantly, Compound C(CpC) and EX527 reversed the effect of RSV against MI/RI in vivo and in vitro and counteracted the autophagy level induced by RSV. Together, our study indicated that RSV could alleviate oxidative stress in cardiomyocytes through activating AMPK/SIRT1-FOXO1 signallingpathway and enhanced autophagy level, thus presenting high potential protection on MI/RI.


Assuntos
Traumatismo por Reperfusão Miocárdica , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Autofagia , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Ratos , Resveratrol/farmacologia , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo
4.
Mol Biol Rep ; 49(5): 3617-3625, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35347542

RESUMO

BACKGROUND: Cervical cancer is the second most common cancer among women living in developing countries. Farnesoid X receptor (FXR) is a member of the nuclear receptor family, which regulates the development and proliferation of cancer. However, the role of and molecular mechanism by which FXR acts in cervical cancer are still unknown. METHODS AND RESULTS: The relationship between FXR and the proliferation of cervical cancer cell lines was detected by MTT and colony formation assays. Immunohistochemistry was used to detect the expression of FXR in cervical cancer tissue slides. Western blotting was used to detect the expression of p14ARF, mouse double minute 2 (MDM2) and p53 when FXR was overexpressed or siRNA was applied. Western blotting was used to detect the expression of MDM2 and p53 when pifithrin-α (PFT-α) was applied. FXR activation inhibited the proliferation of cervical cancer cell lines. FXR was significantly decreased in cervical squamous cell carcinoma, which was correlated with TNM stage, but not with metastasis. Overexpression of FXR activated the p14ARF-MDM2-p53 pathway. As a p53 inhibitor, PFT-α increased MDM2 in Lenti-vector cells, but had no effect on MDM2 in Lenti-FXR cells. CONCLUSIONS: FXR inhibits cervical cancer by upregulating the p14ARF-MDM2-p53 pathway. Activation of FXR may be a potential strategy for the treatment of cervical cancer.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Receptores Citoplasmáticos e Nucleares , Proteína Supressora de Tumor p14ARF , Proteína Supressora de Tumor p53 , Neoplasias do Colo do Útero , Feminino , Humanos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína Supressora de Tumor p14ARF/genética , Proteína Supressora de Tumor p14ARF/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/genética
5.
Acta Pharmacol Sin ; 43(1): 133-145, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33758354

RESUMO

N-n-Butyl haloperidol iodide (F2) is a novel compound that has antiproliferative and antifibrogenic activities. In this study we investigated the therapeutic potential of F2 against liver fibrosis in mice and the underlying mechanisms. Two widely used mouse models of fibrosis was established in mice by injection of either carbon tetrachloride (CCl4) or thioacetamide (TAA). The mice received F2 (0.75, 1.5 or 3 mg·kg-1·d-1, ip) for 4 weeks of fibrosis induction. We showed that F2 administration dose-dependently ameliorated CCl4- or TAA-induced liver fibrosis, evidenced by significant decreases in collagen deposition and c-Jun, TGF-ß receptor II (TGFBR2), α-smooth muscle actin (α-SMA), and collagen I expression in the liver. In transforming growth factor beta 1 (TGF-ß1)-stimulated LX-2 cells (a human hepatic stellate cell line) and primary mouse hepatic stellate cells, treatment with F2 (0.1, 1, 10 µM) concentration-dependently inhibited the expression of α-SMA, and collagen I. In LX-2 cells, F2 inhibited TGF-ß/Smad signaling through reducing the levels of TGFBR2; pretreatment with LY2109761 (TGF-ß signaling inhibitor) or SP600125 (c-Jun signaling inhibitor) markedly inhibited TGF-ß1-induced induction of α-SMA and collagen I. Knockdown of c-Jun decreased TGF-ß signaling genes, including TGFBR2 levels. We revealed that c-Jun was bound to the TGFBR2 promoter, whereas F2 suppressed the binding of c-Jun to the TGFBR2 promoter to restrain TGF-ß signaling and inhibit α-SMA and collagen I upregulation. In conclusion, the therapeutic benefit of F2 against liver fibrosis results from inhibition of c-Jun expression to reduce TGFBR2 and concomitant reduction of the responsiveness of hepatic stellate cells to TGF-ß1. F2 may thus be a potentially new effective pharmacotherapy for human liver fibrosis.


Assuntos
Haloperidol/análogos & derivados , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Animais , Tetracloreto de Carbono/administração & dosagem , Relação Dose-Resposta a Droga , Haloperidol/administração & dosagem , Haloperidol/farmacologia , Células Estreladas do Fígado/metabolismo , Injeções Intraperitoneais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade , Tioacetamida/administração & dosagem , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/metabolismo
6.
Immunol Cell Biol ; 99(3): 274-287, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32935392

RESUMO

Clusterin (CLU) is a multifunctional protein localized extracellularly and intracellularly. Although CLU-knockout (KO) mice are more susceptible to renal ischemia-reperfusion injury (IRI), the mechanisms underlying the actions of CLU in IRI are not fully understood. Macrophages are key regulators of IRI severity and tissue repair. Therefore, we investigated the role of CLU in macrophage polarization and phagocytosis. Renal IRI was induced in wild-type (WT) or CLU-KO C57BL/6 mice by clamping the renal pedicles for 30 min at 32°C. Peritoneal macrophages were activated via an intraperitoneal injection of lipopolysaccharide (LPS). Renal tissue damage was examined using histology, whereas leukocyte phenotypes were assessed using flow cytometry and immunohistochemistry. We found that monocytes/macrophages expressed the CLU protein that was upregulated by hypoxia. The percentages of macrophages (F4/80+ , CD11b+ or MAC3+ ) infiltrating the kidneys of WT mice were significantly less than those in CLU-KO mice after IRI. The M1/M2 phenotype ratio of the macrophages in WT kidneys decreased at day 7 post-IRI when the injury was repaired, whereas that in KO kidneys increased consistently as tissue injury persisted. In response to LPS stimulation, WT mice produced fewer M1 macrophages, but not M2, than the control did. Phagocytosis was stimulated by CLU expression in macrophages compared with the CLU null controls and by the exogenous CLU protein. In conclusion, CLU suppresses macrophage infiltration and proinflammatory M1 polarization during the recovery period following IRI, and enhances phagocytic activity, which may be partly responsible for tissue repair in the kidneys of WT mice after injury.


Assuntos
Clusterina , Rim , Animais , Clusterina/genética , Inflamação , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
IUBMB Life ; 71(2): 261-276, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30452117

RESUMO

Myofibroblast apoptosis is essential for normal resolution of wound repair, including cardiac infarction repair. Impaired cardiac myofibroblast (CMF) apoptosis is associated with excessive extracellular matrix (ECM) deposition, which could be responsible for pathological cardiac fibrosis. Conventionally, angiotensin II (Ang II), a soluble peptide, is implicated in fibrogenesis because it induces cardiac fibroblast (CFb) proliferation, differentiation, and collagen synthesis. However, the role of Ang II in regulation of CMF survival and apoptosis has not been fully clarified. In this report, we cultured neonatal rat CFbs, which transform into CMFs after passage 3 (6-8 days), and investigated the effects of Ang II on CMFs challenged by TNF-α combined with cycloheximide and the underlying mechanisms. Here, we show that Ang II rapidly activates MAPKs but not AKT in CMFs and confers apoptosis resistance, as evidenced by the inhibition of caspase-3 cleavage, early apoptotic cells and late apoptotic cells. This inhibitory effect of Ang II was reversed by blockade of AT1 or inactivation of ERK1/2 or RSK1 but not AT2, indicating that activation of the prosurvival AT1/ERK1/2/RSK1 signaling pathway mediates apoptosis resistance. TGF-ß, a latent fibrotic factor, was found to have no relation to Ang II-induced apoptosis resistance in our study. Furthermore, Ang II-mediated apoptosis resistance, which was conferred by activation of the AT1/ERK1/2/RSK1 signaling pathway, was also confirmed in human adult ventricular cardiac myofibroblasts. Collectively, our findings suggest a novel profibrotic mechanism of Ang II in which it promotes myofibroblast resistance to apoptosis in addition to classical mechanisms, providing a potential novel therapeutic approach by targeting prosurvival signaling pathways. © 2018 IUBMB Life, 71(1):261-276, 2019.


Assuntos
Angiotensina II/farmacologia , Apoptose/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Miofibroblastos/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Apoptose/genética , Butadienos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cicloeximida/farmacologia , Flavonoides/farmacologia , Regulação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Losartan/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Nitrilas/farmacologia , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
8.
Pharmacol Res ; 139: 153-157, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447294

RESUMO

The first clinically used antiarrhythmic, antianginal and anti-hypertensive phenylalkylamine, verapamil's cardiovascular activity is inextricably linked to its ability to antagonize Ca2+ overload via blocking CaV1.2, a cardiac L-type Ca2+ channel of undisputed physiological and pharmacological importance in cardiovascular disorders such as myocardial ischemia-reperfusion injury. From a structural point of view, however, the action mechanism of verapamil is still elusive. Therefore, incorporating previous findings for verapamil and CaV1.2, this review article puts forward two experimental data-derived and -supported 3D structure models for CaV1.2's α1 subunit and its verapamil-bound form. Furthermore, this article suggests three biophysical mechanisms, namely competitive binding, steric hindrance and electrostatic repulsion, towards an atomic level understanding of how verapamil blocks the L-type Ca2+ current mediated by CaV1.2 in reality, which can be useful for the design and development of next-generation Ca2+ antagonists to provide safer and more effective treatment of cardiovascular diseases.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Verapamil/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/química , Miócitos Cardíacos/metabolismo
9.
Cell Physiol Biochem ; 45(1): 250-257, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29357322

RESUMO

BACKGROUND/AIMS: Hypoxia modulation of transforming growth factor (TGF)- ß-induced signaling during myofibroblast transformation is dependent on the specific cell type. The purpose of this study was to explore the effects of hypoxia on myofibroblast transformation of TGF-ß1-induced cardiomyocyte H9c2 cells. METHODS: H9c2 cells were cultured for intermittent hypoxia treatment and TGF-ß1 treatment. α-Smooth muscle actin (α-SMA) expression was examined by western blotting and immunofluorescence after treatment. To further explore the possible mechanism for this effect, the effects of hypoxia on three early TGF-ß-dependent signaling pathways, i.e. the Smad2/3, RhoA and mitogen-activated protein kinase (MAPK) pathways, were screened by western blotting. RESULTS: Intermittent hypoxia induced TGF-ß1 expression, but had no effect on α-SMA expression. Exogenous TGF-ß1 alone upregulated α-SMA expression in H9c2 cells in a concentration- and time-dependent manner. α-SMA expression declined with the duration of hypoxia after intermittent hypoxia and exogenous TGF-ß1 co-treatment. Phospho-JNK and phospho-p38 levels were not significantly altered after TGF-ß1 and hypoxia treatment. However, levels of phospho-ERK increased after TGF-ß1 treatment and continued to increase after hypoxia co-treatment. The activation of phospho-Smad2/3 and phospho-RhoA induced by TGFß1 was significantly reduced after hypoxia co-treatment. CONCLUSION: Hypoxia can inhibit TGF-ß1-induced H9c2 myofibroblast transformation, based on inhibition of α-SMA expression by suppressing signaling downstream of TGF-ß1, Smad2/3 and RhoA. It suggested that TGF-ß-mediated cardiomyocyte transformation is not involved in hypoxia-mediated fibrosis.


Assuntos
Hipóxia Celular , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Regulação para Cima/efeitos dos fármacos
10.
Hepatology ; 65(3): 893-906, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28102638

RESUMO

Chronic hepatitis B virus infection is a major risk factor for hepatocellular carcinoma (HCC). Hepatitis B virus X protein (HBx) is a hepatitis B virus protein that has multiple cellular functions, but its role in HCC pathogenesis has been controversial. Farnesoid X receptor (FXR) is a nuclear receptor with activities in anti-inflammation and inhibition of hepatocarcinogenesis. However, whether or how FXR can impact hepatitis B virus/HBx-induced hepatocarcinogenesis remains unclear. In this study, we showed that HBx can interact with FXR and function as a coactivator of FXR. Expression of HBx in vivo enhanced FXR-responsive gene regulation. HBx also increased the transcriptional activity of FXR in a luciferase reporter gene assay. The HBx-FXR interaction was confirmed by coimmunoprecipitation and glutathione S-transferase pull-down assays, and the FXR activation function 1 domain was mapped to bind to the third α helix in the C terminus of HBx. We also found that the C-terminally truncated variants of HBx, which were found in clinical HCC, were not effective at transactivating FXR. Interestingly, recruitment of the full-length HBx, but not the C-terminally truncated HBx, enhanced the binding of FXR to its response element. In vivo, FXR ablation markedly sensitized mice to HBx-induced hepatocarcinogenesis. CONCLUSIONS: We propose that transactivation of FXR by full-length HBx may represent a protective mechanism to inhibit HCC and that this inhibition may be compromised upon the appearance of C-terminally truncated HBx or when the expression and/or activity of FXR is decreased. (Hepatology 2017;65:893-906).


Assuntos
Carcinoma Hepatocelular/genética , Hepatite C/complicações , Proteínas de Ligação a RNA/metabolismo , Transativadores/genética , Ativação Transcricional/genética , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Vírus da Hepatite B/genética , Hepatite C/patologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Distribuição Aleatória , Proteínas Virais Reguladoras e Acessórias
11.
Acta Pharmacol Sin ; 39(10): 1571-1581, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29795357

RESUMO

Neuronal nicotinic acetylcholine receptors containing α6 subunits (α6*-nAChRs) show highly restricted distribution in midbrain neurons associated with pleasure, reward, and mood control, suggesting an important impact of α6*-nAChRs in modulating mesolimbic functions. However, the function and pharmacology of α6*-nAChRs remain poorly understood because of the lack of selective agonists for α6*-nAChRs and the challenging heterologous expression of functional α6*-nAChRs in mammalian cell lines. In particular, the α6 subunit is commonly co-expressed with α4*-nAChRs in the midbrain, which masks α6*-nAChR (without α4) function and pharmacology. In this study, we systematically profiled the pharmacology and function of α6*-nAChRs and compared these properties with those of α4ß2 nAChRs expressed in the same cell line. Heterologously expressed human α6/α3 chimeric subunits (α6 N-terminal domain joined with α3 trans-membrane domains and intracellular loops) with ß2 and ß3 subunits in the human SH-EP1 cell line (α6*-nAChRs) were used. Patch-clamp whole-cell recordings were performed to measure these receptor-mediated currents. Functionally, the heterologously expressed α6*-nAChRs exhibited excellent function and showed distinct nicotine-induced current responses, such as kinetics, inward rectification and recovery from desensitization, compared with α4ß2-nAChRs. Pharmacologically, α6*-nAChR was highly sensitive to the α6 subunit-selective antagonist α-conotoxin MII but had lower sensitivity to mecamylamine and dihydro-ß-erythroidine. Nicotine and acetylcholine were found to be full agonists for α6*-nAChRs, whereas epibatidine and cytisine were determined to be partial agonists. Heterologously expressed α6*-nAChRs exhibited pharmacology and function distinct from those of α4ß2-nAChRs, suggesting that α6*-nAChRs may mediate different cholinergic signals. Our α6*-nAChR expression system can be used as an excellent cell model for future investigations of α6*-nAChR function and pharmacology.


Assuntos
Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Humanos , Cinética , Técnicas de Patch-Clamp/métodos , Receptores Nicotínicos/química
12.
J Transl Med ; 14(1): 300, 2016 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-27770815

RESUMO

BACKGROUND: The endometrial regenerative cell (ERC) is a novel type of adult mesenchymal stem cell isolated from menstrual blood. Previous studies demonstrated that ERCs possess unique immunoregulatory properties in vitro and in vivo, as well as the ability to differentiate into functional hepatocyte-like cells. For these reasons, the present study was undertaken to explore the effects of ERCs on carbon tetrachloride (CCl4)-induced acute liver injury (ALI). METHODS: An ALI model in C57BL/6 mice was induced by administration of intraperitoneal injection of CCl4. Transplanted ERCs were intravenously injected (1 million/mouse) into mice 30 min after ALI induction. Liver function, pathological and immunohistological changes, cell tracking, immune cell populations and cytokine profiles were assessed 24 h after the CCl4 induction. RESULTS: ERC treatment effectively decreased the CCl4-induced elevation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and improved hepatic histopathological abnormalities compared to the untreated ALI group. Immunohistochemical staining showed that over-expression of lymphocyte antigen 6 complex, locus G (Ly6G) was markedly inhibited, whereas expression of proliferating cell nuclear antigen (PCNA) was increased after ERC treatment. Furthermore, the frequency of CD4+ and CD8+ T cell populations in the spleen was significantly down-regulated, while the percentage of splenic CD4+CD25+FOXP3+ regulatory T cells (Tregs) was obviously up-regulated after ERC treatment. Moreover, splenic dendritic cells in ERC-treated mice exhibited dramatically decreased MHC-II expression. Cell tracking studies showed that transplanted PKH26-labeled ERCs engrafted to lung, spleen and injured liver. Compared to untreated controls, mice treated with ERCs had lower levels of IL-1ß, IL-6, and TNF-α but higher level of IL-10 in both serum and liver. CONCLUSIONS: Human ERCs protect the liver from acute injury in mice through hepatocyte proliferation promotion, as well as through anti-inflammatory and immunoregulatory effects.


Assuntos
Endométrio/citologia , Endométrio/transplante , Fígado/lesões , Fígado/patologia , Adulto , Animais , Antígenos CD/metabolismo , Tetracloreto de Carbono , Proliferação de Células , Citocinas/metabolismo , Feminino , Hepatócitos/patologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Fígado/imunologia , Fígado/fisiopatologia , Testes de Função Hepática , Masculino , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Compostos Orgânicos/metabolismo , Regeneração , Baço/patologia , Linfócitos T Reguladores/imunologia , Regulação para Cima , Adulto Jovem
13.
Int J Colorectal Dis ; 30(10): 1391-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26081471

RESUMO

PURPOSE: The aim of this study was to compare the clinical effect of graciloplasty using two different gracilis encircled loops for the treatment of fecal incontinence after anoplasty for imperforate anus. METHODS: From January 2009 to January 2012, 38 patients were treated by graciloplasty. The patients were randomly divided into two groups, one group consisting of 18 cases underwent the "γ-loop" and the other group consisting of 20 cases underwent the "υ-loop." All patients underwent postoperative defecation training and regular follow-up. All patients were evaluated via Wexner score and anal manometry (including anal resting pressure, anal maximal squeeze pressure, duration of anal squeeze, and rectal maximum tolerable volume) before and after graciloplasty. In addition, it was assessed whether the patients had difficulty defecating while squatting after surgery. RESULTS: The surgeries on the 38 patients were accomplished successfully. There were no differences in postoperative complications between the two groups (P > 0.05). The Wexner score and anal manometry parameters of the two groups were gradually improved after operation. The generalized estimating equation results of the Wexner score indicated that the difference of measurement time was statistically significant (P < 0.05) but the difference of measurement group was not statistically significant (P > 0.05). The results of anal manometry parameters using repeated measures ANOVA indicated that differences between different time points were statistically significant (all P < 0.05) but differences between different surgery groups were not statistically significant (all P > 0.05). Regarding the postoperative defecating difficulties while squatting, the probability of occurrence in the "γ-loop" group was significantly higher than that in the "υ-loop" group. The difference between the two groups was statistically significant (P < 0.05). CONCLUSIONS: Graciloplasty with different gracilis loops can improve anal function in patients. However, "υ-loop" can significantly improve difficulties in defecating while squatting.


Assuntos
Canal Anal/cirurgia , Anus Imperfurado/cirurgia , Incontinência Fecal/cirurgia , Músculo Esquelético/cirurgia , Complicações Pós-Operatórias/cirurgia , Adolescente , Adulto , Canal Anal/fisiologia , Anus Imperfurado/complicações , Defecação , Incontinência Fecal/etiologia , Incontinência Fecal/fisiopatologia , Feminino , Humanos , Masculino , Complicações Pós-Operatórias/fisiopatologia , Postura , Adulto Jovem
14.
Molecules ; 20(9): 16817-32, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26389874

RESUMO

Polysaccharides from Grateloupia livida (Harv.) Yamada (GL) were extracted by a heating circumfluence method. Single-factor experiments were performed for the three parameters: extraction time (X1), extraction temperature (X2) and the ratio of water to raw material (X3) and their test range. From preliminary experimental results, one type of the response surface methodology, the Box-Behnken design was applied for the optimizing polysaccharide extraction conditions. The experimental data obtained were fitted to a second-order polynomial equation. The optimal conditions were extraction time 5 h, extraction temperature 100 °C and ratio of water to raw material 70 mL/g. Under these conditions, the experimental yield was 39.22% ± 0.09%, which well matched the predicted value (39.25%), with 0.9774 coefficient of determination (R²). GL polysaccharides had scavenging activities for DPPH and hydroxyl radicals in vitro. The scavenging rates for both radicals peaked at 20 mg/mL GL concentration. However, the positive standard, VC (ascorbic acid), possessed stronger antioxidant activities than GL polysaccharides. Furthermore, the anticancer activity of GL polysaccharides on HepG2 cell proliferation increased dose- and time-dependently, but the positive standard, 5-fluorouracil (5-fu) showed more significant anticancer activity in this study. Overall, GL polysaccharides may have potential applications in the medical and food industries.


Assuntos
Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Rodófitas/química , Antioxidantes/isolamento & purificação , Fracionamento Químico , Sequestradores de Radicais Livres/farmacologia , Células Hep G2 , Humanos
15.
Molecules ; 19(9): 13305-18, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25170951

RESUMO

Glycyrrhetic acid (GA)-modified pullulan nanoparticles (GAP NPs) were synthesized as a novel carrier of curcumin (CUR) with a degree of substitution (DS) of GA moieties within the range of 1.2-6.2 groups per hundred glucose units. In the present study, we investigated the physicochemical characteristics, release behavior, in vitro cytotoxicity and cellular uptake of the particles. Self-assembled GAP NPs with spherical shapes could readily improve the water solubility and stability of CUR. The CUR release was sustained and pH-dependent. The cellular uptake of CUR-GAP NPs was confirmed by green fluorescence in the cells. An MTT study showed CUR-GAP NPs with higher cytotoxicity in HepG2 cells than free CUR, but GAP NPs had no significant cytotoxicity. GAP is thus an excellent carrier for the solubilization, stabilization, and controlled delivery of CUR.


Assuntos
Antineoplásicos/química , Curcumina/química , Glucanos/química , Ácido Glicirretínico/química , Nanocápsulas/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estabilidade de Medicamentos , Células Hep G2 , Humanos , Cinética , Tamanho da Partícula , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Carcinogenesis ; 34(11): 2460-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23774401

RESUMO

The products of Pol III genes (RNA polymerase III-dependent genes), such as tRNAs and 5S rRNA, are elevated in both transformed and tumor cells suggesting that they play a crucial role in tumorigenesis. An increase in Brf1 (TFIIIB-related factor 1), a subunit of TFIIIB, augments Pol III gene transcription and is sufficient for cell transformation and tumor formation. We have demonstrated that enhancement of Brf1 and Pol III gene expression is associated with the occurrences of hepatocellular carcinoma (HCC) in mice. This suggests that Brf1 may be a key molecule during HCC development. Diethylnitrosamine (DEN), a chemical carcinogen, has been used to induce HCC in rodents. To determine the role of Brf1 and the epigenetic-regulating events in cell proliferation and transformation, hepatocytes were treated with DEN. The results indicate that DEN increases proliferation and transformation of AML-12 cells. DEN enhanced Brf1 expression and tRNA(Leu) and 5S rRNA transcription, as well as H3S10ph (phosphorylation of histone H3 serine 10). Interestingly, DEN-induced Pol III gene transcription and H3S10ph in tumor cells of liver are significantly higher than in non-tumor cells. Inhibition of H3S10ph by H3S10A attenuates the induction of Brf1 and Pol III genes. Further analysis indicates that H3S10ph occupies the promoters of Brf1 and Pol III genes to modulate their expression. Blocking H3S10ph represses cell proliferation and transformation. These results demonstrate that DEN induces H3S10ph, which mediate Brf1 expression, including but not limited Brf1-dependent genes, to upregulate Pol III gene transcription, resulting in an increase in cell proliferation and transformation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Dietilnitrosamina/farmacologia , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , RNA Polimerase III/genética , Serina/metabolismo , Alquilantes/farmacologia , Animais , Apoptose , Western Blotting , Fator 1 de Resposta a Butirato , Adesão Celular , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/metabolismo , Histonas/genética , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Regiões Promotoras Genéticas/genética , RNA Polimerase III/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
17.
Hum Cell ; 36(6): 2259-2269, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37603218

RESUMO

Peritoneal mesenchymal stromal cells (pMSCs) are isolated from peritoneal dialysis (PD) effluent, and treatment with the pMSCs reduces peritoneal membrane injury in rat model of PD. This study was designed to verify the identity of the pMSCs. pMSCs were grown in plastic dishes for 4-7 passages, and their cell surface phenotype was examined by staining with a panel of 242 antibodies. The positive stain of each target protein was determined by an increase in fluorescence intensity as compared with isotype controls in flow cytometrical analysis. Here, we showed that pMSCs predominantly expressed CD9, CD26, CD29, CD42a, CD44, CD46, CD47, CD49b, CD49c, CD49e, CD54, CD55, CD57, CD59, CD63, CD71, CD73, CD81, CD90, CD98, CD147, CD151, CD200, CD201, ß2-micoglobulin, epithelial growth factor receptor, human leukocyte antigen (HLA) class 1, and, to a lesser extent, CD31, CD45RO, CD49a, CD49f, CD50, CD58, CD61, CD105, CD164, and CD166. These cells lacked expression of most hematopoietic markers such as CD11b, CD14, CD19, CD34, CD40, CD80, CD79, CD86, and HLA-DR. There was 38.55% difference in the expression of 83 surface proteins between bone marrow (BM)-derived MSCs and pMSCs, and 14.1% in the expression of 242 proteins between adipose tissue (AT)-derived MSCs and pMSCs. The BM-MSCs but not both AT-MSCs and pMSCs express cytokine receptors (IFNγR, TNFI/IIR, IL-1R, IL-4R, IL-6R, and IL-7R). In conclusion, pMSCs exhibited a typical cell surface phenotype of MSCs, which was not the same as on BM-MSCs or AT-MSCs, suggesting that the pMSCs may represent a different MSC lineage from peritoneal cavity.

18.
Front Pharmacol ; 14: 1102810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923356

RESUMO

Dyslipidemia due to renal insufficiency is a common complication in patients with chronic kidney diseases (CKD), and a major risk factor for the development of cardiovascular events. Atorvastatin (AT) is mainly used in the treatment of dyslipidemia in patients with CKD. However, response to the atorvastatin varies inter-individually in clinical applications. We examined the association between polymorphisms in genes involved in drug metabolism and transport, and plasma concentrations of atorvastatin and its metabolites (2-hydroxy atorvastatin (2-AT), 2-hydroxy atorvastatin lactone (2-ATL), 4-hydroxy atorvastatin (4-AT), 4-hydroxy atorvastatin lactone (4-ATL), atorvastatin lactone (ATL)) in kidney diseases patients. Genotypes were determined using TaqMan real time PCR in 212 CKD patients, treated with 20 mg of atorvastatin daily for 6 weeks. The steady state plasma concentrations of atorvastatin and its metabolites were quantified using ultraperformance liquid chromatography in combination with triple quadrupole mass spectrometry (UPLC-MS/MS). Univariate and multivariate analyses showed the variant in ABCC4 (rs3742106) was associated with decreased concentrations of AT and its metabolites (2-AT+2-ATL: ß = -0.162, p = 0.028 in the dominant model; AT+2-AT+4-AT: ß = -0.212, p = 0.028 in the genotype model), while patients carrying the variant allele ABCC4-rs868853 (ß = 0.177, p = 0.011) or NR1I2-rs6785049 (ß = 0.123, p = 0.044) had higher concentrations of 2-AT+2-ATL in plasma compared with homozygous wildtype carriers. Luciferase activity was enhanced in HepG2 cells harboring a construct expressing the rs3742106-T allele or the rs868853-G allele (p < 0.05 for each) compared with a construct expressing the rs3742106G or the rs868853-A allele. These findings suggest that two functional polymorphisms in the ABCC4 gene may affect transcriptional activity, thereby directly or indirectly affecting release of AT and its metabolites from hepatocytes into the circulation.

19.
Biochem Biophys Res Commun ; 421(1): 86-90, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22487792

RESUMO

N-n-butyl haloperidol iodide (F(2)), a novel quaternary ammonium salt derivative of haloperidol, was reported to antagonize myocardial ischemia/reperfusion injuries. To investigate its mechanisms, we characterized the effects of F(2) on Na(+)/Ca(2+) exchanger currents (I(NCX)) and the L-type Ca(2+) channel current (I(Ca,L)) of cardiomyocytes during either hypoxia/reoxygenation or exposure to H(2)O(2). Using whole-cell patch-clamp techniques, the I(NCX) and I(Ca,L) were recorded from isolated rat ventricular myocytes. Exposure of cardiomyocytes to hypoxia/reoxygenation or H(2)O(2) enhanced the amplitude of the inward and outward of I(NCX) and I(Ca,L). F(2) especially inhibited the outward current of Na(+)/Ca(2+) exchanger, as well as the I(Ca,L), in a concentration-dependent manner. F(2) inhibits cardiomyocyte I(NCX) and I(Ca,L) after exposure to hypoxia/reoxygenation or H(2)O(2) to antagonize myocardial ischemia/reperfusion injury by inhibiting Ca(2+) overload.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Haloperidol/análogos & derivados , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Trocador de Sódio e Cálcio/antagonistas & inibidores , Animais , Hipóxia Celular , Haloperidol/farmacologia , Peróxido de Hidrogênio/farmacologia , Masculino , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Trocador de Sódio e Cálcio/metabolismo
20.
Biochem Biophys Res Commun ; 425(2): 426-30, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22846577

RESUMO

We have previously shown that N-n-butyl haloperidol iodide (F(2)), a newly synthesized compound, reduces ischemia/reperfusion (I/R) injury by preventing intracellular Ca(2+) overload through inhibiting L-type calcium channels and outward current of Na(+)/Ca(2+) exchanger. This study was to investigate the effects of F(2) on activity and protein expression of the rat myocardial sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) during I/R to discover other molecular mechanisms by which F(2) maintains intracellular Ca(2+) homeostasis. In an in vivo rat model of myocardial I/R achieved by occluding coronary artery for 30-60 min followed by 0-120 min reperfusion, treatment with F(2) (0.25, 0.5, 1, 2 and 4 mg/kg, respectively) dose-dependently inhibited the I/R-induced decrease in SERCA activity. However, neither different durations of I/R nor different doses of F(2) altered the expression levels of myocardial SERCA2a protein. These results indicate that F(2) exerts cardioprotective effects against I/R injury by inhibiting I/R-mediated decrease in SERCA activity by a mechanism independent of SERCA2a protein levels modulation.


Assuntos
Cardiotônicos/farmacologia , Haloperidol/análogos & derivados , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Retículo Sarcoplasmático/efeitos dos fármacos , Animais , Haloperidol/farmacologia , Técnicas In Vitro , Masculino , Microscopia Eletrônica de Transmissão , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/ultraestrutura , Ratos , Ratos Sprague-Dawley , Retículo Sarcoplasmático/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA