Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891967

RESUMO

BBX protein is a class of zinc finger transcription factors that have B-box domains at the N-terminus, and some of these proteins contain a CCT domain at the C-terminus. It plays an important role in plant growth, development, and metabolism. However, the expression pattern of BBX genes in alfalfa under hormonal and salt stresses is still unclear. In this study, we identified a total of 125 BBX gene family members by the available Medicago reference genome in diploid alfalfa (Medicago sativa spp. Caerulea), a model plant (M. truncatula), and tetraploid alfalfa (M. sativa), and divided these members into five subfamilies. We found that the conserved motifs of BBXs of the same subfamily reveal similarities. We analyzed the collinearity relationship and duplication mode of these BBX genes and found that the expression pattern of BBX genes is specific in different tissues. Analysis of the available transcriptome data suggests that some members of the BBX gene family are involved in multiple abiotic stress responses, and the highly expressed genes are often clustered together. Furthermore, we identified different expression patterns of some BBX genes under salt, ethylene, salt and ethylene, salicylic acid, and salt and salicylic acid treatments, verified by qRT-PCR, and analyzed the subcellular localization of MsBBX2, MsBBX17, and MsBBX32 using transient expression in tobacco. The results showed that BBX genes were localized in the nucleus. This study systematically analyzed the BBX gene family in Medicago plants, which provides a basis for the study of BBX gene family tolerance to abiotic stresses.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Salino , Fatores de Transcrição , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/efeitos dos fármacos , Medicago/genética , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Estresse Fisiológico/genética
2.
BMC Plant Biol ; 21(1): 85, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563229

RESUMO

BACKGROUND: Rice plants suffer from the rising temperature which is becoming more and more prominent. Mining heat-resistant genes and applying them to rice breeding is a feasible and effective way to solve the problem. RESULT: Three main biomass traits, including shoot length, dry weight, and fresh weight, changed after abnormally high-temperature treatment in the rice seedling stage of a recombinant inbred lines and the natural indica germplasm population. Based on a comparison of the results of linkage analysis and genome-wide association analysis, two loci with lengths of 57 kb and 69 kb in qDW7 and qFW6, respectively, were associated with the rice response to abnormally high temperatures at the seedling stage. Meanwhile, based on integrated transcriptome analysis, some genes are considered as important candidate genes. Combining with known genes and analysis of homologous genes, it was found that there are eight genes in candidate intervals that need to be focused on in subsequent research. CONCLUSIONS: The results indicated several relevant loci, which would help researchers to further discover beneficial heat-resistant genes that can be applied to rice heat-resistant breeding.


Assuntos
Genes de Plantas , Temperatura Alta , Oryza/crescimento & desenvolvimento , Oryza/genética , Plântula/crescimento & desenvolvimento , Plântula/genética , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ligação Genética , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo
3.
Plant Dis ; 104(7): 1979-1985, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32384253

RESUMO

Crown rot (CR) and Fusarium head blight (FHB) are two serious wheat diseases caused by Fusarium pathogens in China. To identify new resistant sources for CR and FHB, 205 Chinese wheat cultivars collected from Huang-Huai wheat-growing region in China were screened for resistance. Cunmai633, LS4607, Pubing01, and Hongyun2 showed seedling resistance to CR with disease index (DI) less than 0.25. Sixteen cultivars showed adult-plant resistance to CR with DI lower than 0.10. Twenty-six cultivars showed moderate resistance to CR at seedling stage with DI from 0.26 to 0.35, and 63 cultivars showed moderate adult-plant resistance with DI from 0.11 to 0.20. Among them, Cunmai633, LS4607, Pubing01, Xinong916, Zhengda161, Xumai14017, Zhengpinmai30, Bainong8822, Jimai216, Huacheng865, Fengyumai5, and Tianmin319 showed resistance or moderate resistance to CR at both seedling and adult plant stages, with Cunmai633 showing the best resistance. Most of the cultivars (>76%) were susceptible to FHB in both the 2017 and 2018 experiments with DI > 0.40. However, some cultivars demonstrated excellent FHB resistance. For example, Zhongyu1526, Tianminxiaoyan369, and Yangao168 were resistant (DI ≤ 0.25) in 2017 and moderately resistant (0.26 ≤ DI ≤ 0.40) in 2018; Zhongwo9 was moderately resistant in 2017 (DI = 0.38) and resistant in 2018 (DI = 0.25). Eight cultivars (Cunmai608, Zhengmai162, Minfeng266, Junda159, LS4607, Deyan1603, Pumai1165, and Fengmai12) showed moderate FHB resistance with DI lower than 0.40 in both experiments. LS4607 showed moderate resistance to both diseases. The resistant cultivars identified in this study can be used for mapping the resistance genes and improving resistance to CR and/or FHB.


Assuntos
Fusarium , China , Doenças das Plantas , Plântula , Triticum
4.
Biochem Biophys Res Commun ; 471(2): 320-7, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26869512

RESUMO

The Auxin/indole-3-acetic acid (Aux/IAA) genes encode short-lived nuclear proteins that are known to be involved in the primary cellular responses to auxin. To date, systematic analysis of the Aux/IAA genes in potato (Solanum tuberosum) has not been conducted. In this study, a total of 26 potato Aux/IAA genes were identified (designated from StIAA1 to StIAA26), and the distribution of four conserved domains shared by the StIAAs were analyzed based on multiple sequence alignment and a motif-based sequence analysis. A phylogenetic analysis of the Aux/IAA gene families of potato and Arabidopsis was also conducted. In order to assess the roles of StIAA genes in tuber development, the results of RNA-seq studies were reformatted to analyze the expression patterns of StIAA genes, and then verified by quantitative real-time PCR. A large number of StIAA genes (12 genes) were highly expressed in stolon organs and in during the tuber initiation and expansion developmental stages, and most of these genes were responsive to indoleacetic acid treatment. Our results suggested that StIAA genes were involved in the process of tuber development and provided insights into functional roles of potato Aux/IAA genes.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Genoma de Planta/fisiologia , Ácidos Indolacéticos/metabolismo , Família Multigênica/fisiologia , Tubérculos/fisiologia , Solanum tuberosum/fisiologia , Mapeamento Cromossômico , Reguladores de Crescimento de Plantas/metabolismo , Análise de Sequência de Proteína , Distribuição Tecidual
5.
Plant Sci ; 338: 111901, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37865209

RESUMO

Sunflowers are well-known ornamental plants, while sunflowers with red corolla are rare and the mechanisms underlying red coloration remain unclear. Here, a comprehensive analysis of metabolomics and transcriptomics on flavonoid pathway was performed to investigate the molecular mechanisms underlying the differential color formation between red sunflower Pc103 and two yellow sunflowers (Yr17 and Y35). Targeted metabolomic analysis revealed higher anthocyanin levels but lower flavonol content in Pc103 compared to the yellow cultivars. RNA-sequencing and phylogenetic analysis identified multiple genes involved in the flavonoid pathway, including series of structural genes and three MYB and bHLH genes. Specifically, HaMYBA and HabHLH1 were up-regulated in Pc103, whereas HaMYBF exhibited reduced expression. HaMYBA was found to interact with HabHLH1 in vivo and in vitro, while HaMYBF does not. Transient expression analysis further revealed that HabHLH1 and HaMYBA cooperatively regulate increased expression of dihydroflavonol 4-reductase (DFR), leading to anthocyanin accumulation. On the other hand, ectopic expression of HaMYBF independently modulates flavonol synthase (FLS) expression, but hindered anthocyanin production. Collectively, our findings suggest that the up-regulation of HaMYBA and HabHLH1, as well as the down-regulation of HaMYBF, contribute to the red coloration in Pc103. It offers a theoretical basis for improving sunflower color through genetic engineering.


Assuntos
Antocianinas , Helianthus , Antocianinas/metabolismo , Helianthus/genética , Helianthus/metabolismo , Filogenia , Flores/genética , Flores/metabolismo , Flavonoides/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Front Plant Sci ; 10: 1389, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31737015

RESUMO

Cuticular wax accumulation and composition affects drought resistance in plants. Brachypodium distachyon plants subjected to water deficit and polyethylene glycol treatments resulted in a significant increase in total wax load, in which very-long-chain (VLC) alkanes were more sensitive to these treatments than other wax compounds, implying that VLC alkanes biosynthesis plays a more important role in drought resistance in B. distachyon. ECERIFERUM1 (CER1) has been reported to encode a core enzyme involved in VLC alkanes biosynthesis in Arabidopsis (Arabidopsis thaliana), but few corresponding genes are investigated in B. distachyon. Here, we identified eight CER1 homologous genes in B. distachyon, namely BdCER1-1 to BdCER1-8, and then analyzed their sequences feature, expression patterns, stress induction, and biochemical activities. These genes had similar protein structure to other reported CER1 and CER1-like genes, but displayed closer phylogenetic relationship to the rice OsGL1 genes. They were further found to exhibit various tissue expression patterns after being induced by abiotic stresses. Among them, BdCER1-8 gene showed extremely high expression in leaves. Heterologous introduction of BdCER1-8 into the Arabidopsis cer1 mutant rescued VLC alkanes biosynthesis. These results indicate that BdCER1 genes are likely to be involved in VLC alkanes biosynthesis of B. distachyon. Taken together, BdCER1-8 seems to play an explicit and predominant role in VLC alkanes biosynthesis in leaf. Our work provides important clues for further characterizing function of CER1 homologous genes in B. distachyon and also an option to improve drought resistance of cereal crops.

7.
Genes (Basel) ; 9(10)2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30347757

RESUMO

The branched spike phenotype is an important supernumerary spikelet trait of Triticum turgidum L. associated with the production of significantly more grains per spike, thereby offering a higher potential yield. However, the genetic basis of branch meristem (BM) development remains to be fully elucidated in wheat. TAW1, an ALOG (Arabidopsis LSH1 and Oryza G1) family gene, has been shown to function as a unique regulator in promoting BM development in rice. In this study, we found that the development pattern of the BMs of the branched spike in wheat was similar to the indeterminate BMs of rice. Moreover, phylogenetic analysis classified the ALOG genes into 12 groups. This family of genes was found to have evolved independently in eudicots and monocots and was evolutionarily conserved between wheat and rice as well as during wheat polyploidization. Furthermore, experiments revealed that TtALOG2-1A, a TAW1-homologous gene, plays a significant role in regulating the transition of indeterminate BM fate. Finally, large-scale RNA-sequencing studies and quantitative real-time polymerase chain reaction (qRT-PCR) experiments revealed that members of the TtALOGs may act upstream of the TtMADS22, TtMADS47, and TtMADS55 genes to promote indeterminate BM activities. Our findings further knowledge on BM development in wheat.

8.
Plant Physiol Biochem ; 107: 164-177, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27289266

RESUMO

Amino acid transporters (AATs) are integral membrane proteins responsible for the transmembrane transport of amino acids and play important roles in various physiological processes of plants. However, there has not yet been a genome-wide overview of the StAAT gene family to date and only StAAP1 has been previously studied in potato. In this paper, a total of 72 StAATs were identified using a series of bioinformatics searches and classified into 12 subfamilies based on their phylogenetic relationship with known Arabidopsis and rice AATs. Chromosomal localization revealed their distribution on all 12 chromosomes. Nearly one-third of StAAT genes (23 of 72) were derived from gene duplication, among which tandem duplication made the greatest contribution to the expansion of the StAAT family. Motif analysis showed that the same subfamily had similar conserved motifs in both numbers and varieties. Moreover, high-throughput sequencing data was used to analyze the expression patterns of StAAT genes and was verified by quantitative real-time RT-PCR. The expression of StAAT genes exhibited both abundant and tissue-specific expression patterns, which might be connected to their functional roles in long- and short-distance transport. This study provided a comprehensive survey of the StAAT gene family, and could serve as a theoretical foundation for the further functional identification and utilization of family members.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Solanum tuberosum/genética , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/classificação , Sistemas de Transporte de Aminoácidos/metabolismo , Cromossomos de Plantas , Duplicação Gênica , Perfilação da Expressão Gênica , Genes de Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA