Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(1): e2307395120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38157451

RESUMO

Oxidative stress, which can be activated by a variety of environmental risk factors, has been implicated as an important pathogenic factor for inflammatory bowel disease (IBD). However, how oxidative stress drives IBD onset remains elusive. Here, we found that oxidative stress was strongly activated in inflamed tissues from both ulcerative colitis patients and Crohn's disease patients, and it caused nuclear-to-cytosolic TDP-43 transport and a reduction in the TDP-43 protein level. To investigate the function of TDP-43 in IBD, we inducibly deleted exons 2 to 3 of Tardbp (encoding Tdp-43) in mouse intestinal epithelium, which disrupted its nuclear localization and RNA-processing function. The deletion gave rise to spontaneous intestinal inflammation by inducing epithelial cell necroptosis. Suppression of the necroptotic pathway with deletion of Mlkl or the RIP1 inhibitor Nec-1 rescued colitis phenotypes. Mechanistically, disruption of nuclear TDP-43 caused excessive R-loop accumulation, which triggered DNA damage and genome instability and thereby induced PARP1 hyperactivation, leading to subsequent NAD+ depletion and ATP loss, consequently activating mitochondrion-dependent necroptosis in intestinal epithelial cells. Importantly, restoration of cellular NAD+ levels with NAD+ or NMN supplementation, as well as suppression of ALKBH7, an α-ketoglutarate dioxygenase in mitochondria, rescued TDP-43 deficiency-induced cell death and intestinal inflammation. Furthermore, TDP-43 protein levels were significantly inversely correlated with γ-H2A.X and p-MLKL levels in clinical IBD samples, suggesting the clinical relevance of TDP-43 deficiency-induced mitochondrion-dependent necroptosis. Taken together, these findings identify a unique pathogenic mechanism that links oxidative stress to intestinal inflammation and provide a potent and valid strategy for IBD intervention.


Assuntos
Doenças Inflamatórias Intestinais , Necroptose , Humanos , Animais , Camundongos , NAD/metabolismo , Estruturas R-Loop , Doenças Inflamatórias Intestinais/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Inflamação/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo
2.
Drug Resist Updat ; 74: 101068, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402670

RESUMO

The treatment for trastuzumab-resistant breast cancer (BC) remains a challenge in clinical settings. It was known that CD47 is preferentially upregulated in HER2+ BC cells, which is correlated with drug resistance to trastuzumab. Here, we developed a novel anti-CD47/HER2 bispecific antibody (BsAb) against trastuzumab-resistant BC, named IMM2902. IMM2902 demonstrated high binding affinity, blocking activity, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and internalization degradation effects against both trastuzumab-sensitive and trastuzumab-resistant BC cells in vitro. The in vivo experimental data indicated that IMM2902 was more effective than their respective controls in inhibiting tumor growth in a trastuzumab-sensitive BT474 mouse model, a trastuzumab-resistant HCC1954 mouse model, two trastuzumab-resistant patient-derived xenograft (PDX) mouse models and a cord blood (CB)-humanized HCC1954 mouse model. Through spatial transcriptome assays, multiplex immunofluorescence (mIFC) and in vitro assays, our findings provided evidence that IMM2902 effectively stimulates macrophages to generate C-X-C motif chemokine ligand (CXCL) 9 and CXCL10, thereby facilitating the recruitment of T cells and NK cells to the tumor site. Moreover, IMM2902 demonstrated a high safety profile regarding anemia and non-specific cytokines release. Collectively, our results highlighted a novel therapeutic approach for the treatment of HER2+ BCs and this approach exhibits significant anti-tumor efficacy without causing off-target toxicity in trastuzumab-resistant BC cells.


Assuntos
Anticorpos Biespecíficos , Neoplasias da Mama , Antígeno CD47 , Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Receptor ErbB-2 , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Feminino , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Camundongos , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/imunologia , Imunoterapia/métodos , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos
3.
Ann Surg Oncol ; 31(4): 2451-2460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38063990

RESUMO

BACKGROUND: We compare the application of intravenous indocyanine green (ICG) fluorescence imaging in lung cancer with near-infrared-I (NIR-I) and near-infrared-II (NIR-II) windows. METHODS: From March to December 2022, we enrolled patients who received an intravenous injection of ICG (5 mg/kg) 1 day before the planned lung cancer surgery. The lung cancer nodules were imaged by NIR-I/II fluorescence imaging systems, and the tumor-to-normal-tissue ratio (TNR) was calculated. In addition, the fluorescence intensity and signal-to-background ratio (SBR) of capillary glass tubes containing ICG covered with different thicknesses of lung tissue were measured by NIR-I/II fluorescence imaging systems. RESULTS: In this study, 102 patients were enrolled, and the mean age was 59.9 ± 9.2 years. A total of 96 (94.1%) and 98 (96.1%) lung nodules were successfully imaged with NIR-I and NIR-II fluorescence, and the TNR of NIR-II was significantly higher than that of NIR-I (3.9 ± 1.3 versus 2.4 ± 0.6, P < 0.001). In multiple linear regression, solid nodules (P < 0.001) and squamous cell carcinoma (P < 0.001) were independent predictors of a higher TNR of NIR-I/II. When capillary glass tubes were covered with lung tissue whose thickness was more than 2 mm, the fluorescence intensity and the SBR of NIR-II were significantly higher than those of NIR-I. CONCLUSIONS: We verified the feasibility of NIR-II fluorescence imaging in intravenous ICG lung cancer imaging for the first time. NIR-II fluorescence can improve the TNR and penetration depth of lung cancer with promising clinical prospects.


Assuntos
Verde de Indocianina , Neoplasias Pulmonares , Humanos , Pessoa de Meia-Idade , Idoso , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Imagem Óptica/métodos , Pulmão , Fluorescência
4.
Ecotoxicol Environ Saf ; 280: 116561, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850706

RESUMO

Imidacloprid (IMI), a commonly utilized neonicotinoid insecticide, has been identified to adversely impact glucose homeostasis. Pregnant women are believed to be more sensitive to toxins than non-pregnant women, and the impact of IMI exposure on gestational hyperglycemia remain unclear. To explore the impact, pregnant mice fed a high-fat diet were exposed to different doses (0.06, 0.6, 6 mg/kg bw/day) of IMI by gavage. Glucose homeostasis-related parameters were measured. The glucose homeostasis influenced by IMI treatment was explored through integrating gut microbiota, metabolomic and transcriptomic analysis. Results showed that IMI-H (6 mg/kg bw/day) exposure notably restricted gestational weight gain and perturbed glucose homeostasis characterized by reduced glucose tolerance and insulin sensitivity, alongside elevated levels of fasting blood glucose and insulin. Multi-omics analysis revealed that IMI-H exposure induced significant changes in the richness and composition of the gut microbiome. The metabolite profiles of serum samples and cecal contents, and transcriptome of liver and ileum were all affected by IMI-H treatment. The altered gut microbiota, metabolites and genes exhibited significant correlations with glucose homeostasis-related parameters. These differential metabolites and genes were implicated in various metabolic pathways including bile secretion, glucagon signaling pathway, lipid metabolism, fatty acid metabolism. Significant correlations were observed between the altered gut microbiota and caecum metabolome as well as liver transcriptome. For example, the abundance of Oscillibacter was strongly correlated with gut microflora-related metabolites (Icosenoic acid, Lysosulfatide, and fluticasone) and liver differential genes (Grin3b, Lifr, and Spta1). Together, IMI exposure resulted in significant changes in microbial composition, along with alterations in certain metabolites and genes associated with metabolic process, which may promote gestational hyperglycemia.


Assuntos
Microbioma Gastrointestinal , Hiperglicemia , Inseticidas , Neonicotinoides , Nitrocompostos , Neonicotinoides/toxicidade , Feminino , Animais , Gravidez , Nitrocompostos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Hiperglicemia/induzido quimicamente , Inseticidas/toxicidade , Glicemia/efeitos dos fármacos , Metabolômica , Transcriptoma/efeitos dos fármacos , Diabetes Gestacional/induzido quimicamente , Dieta Hiperlipídica , Multiômica
6.
Sensors (Basel) ; 23(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38139580

RESUMO

In this article, a miniature eight-port multiple-input multiple-output (MIMO) antenna array is proposed for fifth-generation (5G) sub-6 GHz handset applications. The individual antenna element comprises a radiator shaped like the Chinese character "" (phonetically represented as "Wang") and three split-ring resonators (SRR) on the metal frame. The size of the individual antenna element is only 6.8 × 7 × 1 mm3 (47.6 mm3). The proposed antenna element has a -10 dB impedance bandwidth of 1.7 GHz (from 3.3 GHz to 5 GHz) that can cover 5G New Radio (NR) sub-6 GHz bands N77 (3.3-4.2 GHz), N78 (3.3-3.8 GHz), and N79 (4.4-5 GHz). The evolution design, the current distribution, the effects of single-handed holding, and the analysis of the parameters are deduced to study the approach used to design the featured antenna. The measured total efficiencies are from 40% to 80%, the isolation is better than 12 dB, the calculated envelope correlation coefficient (ECC) is less than 0.12, and the calculated channel capacity (CC) ranges from 35 to 38 bps/Hz. The presented antenna array is a good alternative to 5G mobile handsets with wideband operation, a metal frame, and minimized spacing.

7.
J Transl Med ; 20(1): 11, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980171

RESUMO

Anemia is a significant complication of chronic inflammation and may be related to dysregulated activities among erythroblastic island (EBI) macrophages. GM-CSF was reported to be upregulated and attracted as a therapeutic target in many inflammatory diseases. Among EBIs, we found that the GM-CSF receptor is preferentially and highly expressed among EBI macrophages but not among erythroblasts. GM-CSF treatment significantly decreases human EBI formation in vitro by decreasing the adhesion molecule expression of CD163. RNA-sequence analysis suggests that GM-CSF treatment impairs the supporting function of human EBI macrophages during erythropoiesis. GM-CSF treatment also polarizes human EBI macrophages from M2-like type to M1-like type. In addition, GM-CSF decreases mouse bone marrow (BM) erythroblasts as well as EBI macrophages, leading to a reduction in EBI numbers. In defining the molecular mechanism at work, we found that GM-CSF treatment significantly decreases the adhesion molecule expression of CD163 and Vcam1 in vivo. Importantly, GM-CSF treatment also decreases the phagocytosis rate of EBI macrophages in mouse BM as well as decreases the expression of the engulfment-related molecules Mertk, Axl, and Timd4. In addition, GM-CSF treatment polarizes mouse BM EBI macrophages from M2-like type to M1-like type. Thus, we document that GM-CSF impairs EBI formation in mice and humans. Our findings support that targeting GM-CSF or reprogramming EBI macrophages might be a novel strategy to treat anemia resulting from inflammatory diseases.


Assuntos
Eritropoese , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Animais , Eritroblastos/metabolismo , Eritropoese/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Macrófagos/metabolismo , Camundongos , Fagocitose
8.
Eur J Nucl Med Mol Imaging ; 49(13): 4325-4337, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35838757

RESUMO

PURPOSE: The surgery of glioblastoma (GBM) requires a maximal resection of the tumor when it is safe and feasible. The infiltrating growth property of the GBM makes it a challenge for neurosurgeons to identify the tumor tissue even with the assistance of the surgical microscope. This highlights the urgent requirement for imaging techniques that can differentiate tumor tissues during surgery in real time. Fluorescence image-guided surgery of GBM has been investigated using several non-specific fluorescent probes that emit light in the visible and the first near-infrared window (NIR-I, 700-900 nm), which limit the detection accuracy because of the non-specific targeting mechanism and spectral characteristics. Targeted NIR-II (1000-1700 nm) fluorescent probes for GBM are thus highly desired. The folate receptor (FR) has been reported to be upregulated in GBM, which renders it to be a promising target for specific tumor imaging. METHODS: In this study, the folic acid (FA) that can target the FR was conjugated with the clinically approved indocyanine green (ICG) dye and DOTA chelator for radiolabeling with 64Cu to achieve targeted positron emission tomography (PET) and fluorescence imaging of GBM. RESULTS: Surprisingly it was found that the resulted bioconjugate, DOTA-FA-ICG and non-radioactive natCu-DOTA-FA-ICG, were both self-assembled into nanoparticles with NIR-II emission signal. The radiolabeled DOTA-FA-ICG, 64Cu-DOTA-FA-ICG, was found to specifically accumulate in the orthotopic GBM models using in vivo PET, NIR-II, and NIR-I fluorescence imaging. The best time window of fluorescence imaging was demonstrated to be 24 h after DOTA-FA-ICG injection. NIR-II fluorescence image-guided surgery was successfully conducted in the orthotopic GBM models using DOTA-FA-ICG. All the fluorescent tissue was removed and proved to be GBM by the H&E examination. CONCLUSION: Overall, our study demonstrates that the probes, 64Cu-DOTA-FA-ICG and DOTA-FA-ICG, hold promise for preoperative PET examination and intraoperative NIR-II fluorescence image-guided surgery of GBM, respectively.


Assuntos
Glioblastoma , Cirurgia Assistida por Computador , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Verde de Indocianina , Corantes Fluorescentes , Receptor 1 de Folato , Imagem Óptica/métodos , Cirurgia Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Ácido Fólico , Quelantes
9.
Epilepsy Behav ; 135: 108904, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36095876

RESUMO

OBJECTIVE: The management of pregnant women with epilepsy (WWE) treated with antiepileptic drugs (AEDs) polytherapy poses a great challenge. The purpose of this study was to evaluate the major congenital malformations (MCMs) associated with AED polytherapy, to assess the impacts of polytherapy regimens on seizure control and breastfeeding, and to determine the potential predictors for pregnancy outcomes. METHODS: This study was based on prospectively acquired data from a registry enrolling WWE in early pregnancy from Feb 2010 to July 2019, in which 123 pregnancies in 110 WWE were exposed to 27 different AED combinations. RESULTS: There were 123 pregnancies in 110 WWE analyzed in our study. The live birth rate was 86.2 % and the risk of MCMs was 10.4 %. Multivariate analysis indicated that prenatal exposure to phenobarbital (odds ratio [OR], 17.424; 95 %CI, 1.510-201.067; P = 0.022) and topiramate (OR, 9.469; 95 %CI, 1.149-62.402; P = 0.036) was associated with increased risk of MCMs. Valproate (OR, 4.441; 95 %CI, 1.165-16.934; P = 0.029), phenobarbital (OR, 13.636; 95 %CI, 2.146-86.660; P = 0.006) and topiramate (OR, 7.527; 95 %CI, 1.764-32.118; P = 0.006) were significantly correlated with adverse pregnancy outcomes. Among 67 pregnancies in four combinations over 10 patients, 15 (22.4 %) remained seizure free through pregnancy, seizure frequency increased in 17 (25.4 %), decreased in 24 (35.8 %) women, in 26 (38.8 %) remained unchanged. Only 23.6 % of mothers undertook exclusive breastfeeding. Planned pregnancy was the only independent factor significantly associated with decreased risk of adverse pregnancy outcomes (OR, 0.139; 95 % CI, 0.051-0.382; P < 0.001). Notably, no adverse pregnancy outcome was recorded in pregnancies exposed to the combination of lamotrigine plus levetiracetam. CONCLUSION: Prenatal exposure to the combinations containing valproate, phenobarbital, or topiramate was associated with increased risk of adverse pregnant outcomes. AED-related teratogenicity may be reduced by planned pregnancy in WWE exposed to polytherapy. Our findings also suggest the combination of lamotrigine and levetiracetam seems to be most desirable to balance seizure control and fetal safety.


Assuntos
Epilepsia , Complicações na Gravidez , Efeitos Tardios da Exposição Pré-Natal , Anticonvulsivantes/efeitos adversos , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Feminino , Humanos , Lamotrigina/uso terapêutico , Levetiracetam/uso terapêutico , Masculino , Fenobarbital/efeitos adversos , Gravidez , Complicações na Gravidez/induzido quimicamente , Complicações na Gravidez/tratamento farmacológico , Resultado da Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Sistema de Registros , Topiramato/uso terapêutico , Ácido Valproico/efeitos adversos
10.
Plant Dis ; 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549323

RESUMO

As a commonly traditional Chinese medicine, the perennial herb Dangshen (Codonopsis pilosula) has superior curative effects including regulating immunity, strengthening the spleen, and tonifying lungs (Bai et al. 2020). To imitate natural ecological conditions, plants were grown on hillside fields with stems prostrate on the ground, tangle-up with each other. In August 2020, leaf spots were observed on C. pilosula in Wutai county, Shanxi province, China, and indicated a high disease incidence (70%-80%) in investigated fields (6.67 ha). Small brown necrotic spots, occasionally enclosed by chlorotic halos, were observed on leaves, stems, and sepals. For identification of the pathogen, 15 small pieces (5×5 mm) of symptomatic tissues from 5 randomly-collected diseased plants were surface sterilized, placed on potato dextrose agar plates, and incubated for 4 d in darkness at 25 °C to obtain the colonies. Cultures were purified by single spore isolation from these colonies. A total of 15 isolates named as Dcp-3, and Dcp-5~Dcp-18 were recovered. They produced ovoid or obclavate spores with 15.9-57.5×9.1-20.1 µm in size, 1-6 transverse septa, and 0-4 longitudinal septa. The conidial chains with 4 to 6 spores had numerous secondary and occasionally tertiary chains on potato carrot agar plates. Because all isolates had identical morphological traits, five genes from the representative isolate Dcp-3, actin (ACT), Alternaria major allergen (Alt a1), plasma membrane ATPase (ATP), histone 3 (H3), and rDNA ITS, were amplified with primer pairs ACTDF1/ACTDR1, Alt-for/Alt-rev, ATPDF1/ATPDR1, H3-1a/H3-1b, and ITS1/ITS4, respectively (Hong et al. 2005; Lawrence et al. 2013; Ma et al. 2020). BLASTn searches indicated species of Dcp-3 could not be accurately confirmed by rDNA ITS, ATP, ACT, and Alt a1 (GenBank accession nos. OM334894, OM362504, OM326344, OM362500). Phylogenetic analysis showed it was most closely related to Alternaria alternata, A. arborescens, and A. tenuissima based on concatenated sequences of above four genes. The H3 sequence (OM362508) shared 100% homology with that of A. alternata (MN481948). The phylogenetic tree using H3 also confirmed Dcp-3 as A. alternata. Heathly, two-year-old C. pilosula were transplanted to a greenhouse. A surface-sterilized leaf was sprayed with 50 µL spore suspension (106 conidia/mL) of Dcp-3. A leaf sprayed with isometric sterile water was used as controls. Each treatment used six plants (five leaves per plant). Plants were covered with sterilized plastic bags and incubated at 22 ℃. The test was repeated twice. A week later, control leaves were healthy, but brown necrotic spots similar to field symptoms emerged on treated leaves. The A. alternata isolates were re-isolated from the border of lesions, and confirmed by morphological and molecular characteristics mentioned above, fulfilling Koch's postulates. Leaf spot of C. pilosula caused by Septoria codonopsidis has been reported in China (Wang et al. 2011). However, to our knowledge, this is the first report of A. alternata inciting leaf spot of C. pilosula in China. Our report would promote growers to enhance the field management and consider associated strategies on controlling Alternaria leaf spot of C. pilosula.

11.
Plant Dis ; 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36265156

RESUMO

Dangshen (Codonopsis pilosula) is a well-known medicinal and food homologous plant in China, which is widely used as a tonic agent and has good immunomodulatory effects (Bai et al. 2020; Luan et al. 2021). To retain the best medicinal properties, growers imitated the original ecological planting method for cultivating C. pilosula in hillside fields in Wutai county, Shanxi province, China. In July and August 2021 and 2022, stem canker disease was observed in C. pilosula. The basal part of the stems showed slightly sunken brown lesions, and the disease incidence was up to 20% in the investigated fields (6.67 ha). To identify the causal agents of stem canker, 12 small pieces (approximately 5 mm long) from 12 diseased samples (one piece per sample) were cut from the border of the lesions, surface-sterilized (70% ethanol for 30 s, 0.5% NaClO for 3 min), washed three times with sterile water, and then incubated on water agar (WA) at 25 °C for 24 h. Isolates with right-angle branching, a septum near the branch, and a slight constriction at the branch base were selected, and their hyphal tips were transferred onto potato dextrose agar (PDA) plates. After incubation at 25 °C, 12 Rhizoctonia-like isolates (Dcp-19 to Dcp-30) with white colonies were obtained. White monilioid cells in aerial mycelia formed as they aged but did not produce sclerotia. Based on nuclear fluorescence staining with 1 µg·mL-1 4'-6-diamidino-2-phenylindole as described by Ahvenniemi et al. (2009), there were two nuclei per hyphal cell for all the 12 isolates. Moreover, the sequences of internal transcribed spacer region of ribosomal DNA (rDNA-ITS) of all the 12 isolates were amplified using the primers ITS1/ITS4 (White et al. 1990). For identical sequences, only the rDNA-ITS sequence (674 bp) of Dcp-19 has been deposited in GenBank (accession no. ON004932) and BLASTn analyses showed 100% homology with Rhizoctonia AG-K (MF070696). Maximum likelihood phylogenetic analysis further confirmed the identification. Healthy C. pilosula plants grown for two years in hillside fields were transplanted into sterile soil for pathogenicity testing. And the 12 isolates were all done in this test. Sterilized wheat seeds were placed on a 2-day-old colony of the isolate and incubated for 7 days. One fungus-infested seed was placed at the base of the stem and covered with sterilized soil. Control plants were inoculated with sterilized wheat seeds. Tests were performed on three plants for each isolate. The experiment was repeated twice. All the plants were cultivated at 22 °C and 50% relative humidity. After three weeks, the basal stems of the control plants were still healthy and did not have lesions, but the treated plants exhibited sunken brown canker lesions. The mean disease incidence of all the 12 isolates was 58.33%. The AG-K isolates re-isolated from the lesions of treated plants were confirmed by the morphological and molecular characteristics mentioned above, fulfilling Koch's postulates. To our knowledge, this is the first report of stem canker on C. pilosula caused by binucleate Rhizoctonia AG-K in China.

12.
Sensors (Basel) ; 22(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015852

RESUMO

This article reported a compact ultra-thin tightly arranged 4 × 4 multiple-input multiple-output (MIMO) antenna pair (AP) functioning in the fifth-generation (5G) n78 band (3.4-3.6 GHz) for the ultra-thin 5G mobile handset. Two APs were printed on the center of two sideboards. A T-shaped open-ended slot was utilized in the grounding plane to improve the port impedance matching and attenuate the reciprocal magnetic coupling. A minimized total volume of 145 × 75 × 5 mm3 was obtained, and the area of each radiating unit was only 8.5 × 4.2 mm2 (0.1λ0 × 0.05λ0, λ0 is the free-space wavelength at the frequency of 3.5 GHz). By placing two radiating elements in an exceeding closed (1 mm or 0.01167λ0) distance, the designed AP precisely resonated at 3.5 GHz, and an acceptable measured isolation performance superior to 17 dB was attained. A prototype of this presented APs system was printed and tested, and remarkable consistency was observed between the simulated and measured curves. Numerous indicators were computed to assess its MIMO performance, such as Envelope Correlation Efficiency (ECC), Diversity Gain (DG), Total Active Reflection Coefficient (TARC), and Multiplexing Efficiency (ME).

13.
Toxicol Appl Pharmacol ; 427: 115668, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358556

RESUMO

Pharmacological postconditioning (PPC), drug intervention before or during the early minutes of reperfusion, could stimulate cardioprotection as ischemic postconditioning. In this study, we examined whether PPC with sappanone A (SA), a homoisoflavanone with potent antioxidant and anti-inflammatory activity, has a protective effect on myocardial ischemia reperfusion injury (MIRI), and explored the underlying mechanism. A MIRI model was established using the Langendorff method. After 30 min of ischemia, isolated rat hearts were treated with SA at the onset of reperfusion to stimulate PPC. The changes in myocardial infarct size, mitochondrial function, mitochondrial biogenesis, mitophagy, and mitochondrial fission and fusion were detected. The results showed that SA postconditioning decreased the myocardial infarct size, inhibited the release of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and cardiac troponin (cTnI), as well as improved cardiac function, enhanced myocardial ATP content and mitochondrial complex activity, and prevented the loss of mitochondrial membrane potential and opening of mitochondrial permeability transition pore (mPTP). Mechanistically, we found that SA was an AMP-activated protein kinase (AMPK) activator, and SA postconditioning could facilitate mitochondrial biogenesis by increasing mitochondrial DNA (mtDNA) copy number and the expression of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α). In addition, it balanced mitochondrial dynamics by decreasing fission and increasing fusion, and enhanced mitophagy in an AMPK-dependent manner. Moreover, AMPK silencing abolished the cardioprotection of SA postconditioning. Collectively, our study demonstrated that SA postconditioning ameliorated MIRI and mitochondrial dysfunction by regulation of mitochondrial quality control via activating AMPK. This finding provides a new insight into pharmacological action and clinical use of SA.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Pós-Condicionamento Isquêmico/métodos , Isoflavonas/farmacologia , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Relação Dose-Resposta a Droga , Isoflavonas/uso terapêutico , Preparação de Coração Isolado/métodos , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Ratos , Ratos Wistar
14.
Eur J Nucl Med Mol Imaging ; 48(11): 3482-3492, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33904984

RESUMO

PURPOSE: Surgery is the predominant treatment modality of human glioma but suffers difficulty on clearly identifying tumor boundaries in clinic. Conventional practice involves neurosurgeon's visual evaluation and intraoperative histological examination of dissected tissues using frozen section, which is time-consuming and complex. The aim of this study was to develop fluorescent imaging coupled with artificial intelligence technique to quickly and accurately determine glioma in real-time during surgery. METHODS: Glioma patients (N = 23) were enrolled and injected with indocyanine green for fluorescence image-guided surgery. Tissue samples (N = 1874) were harvested from surgery of these patients, and the second near-infrared window (NIR-II, 1000-1700 nm) fluorescence images were obtained. Deep convolutional neural networks (CNNs) combined with NIR-II fluorescence imaging (named as FL-CNN) were explored to automatically provide pathological diagnosis of glioma in situ in real-time during patient surgery. The pathological examination results were used as the gold standard. RESULTS: The developed FL-CNN achieved the area under the curve (AUC) of 0.945. Comparing to neurosurgeons' judgment, with the same level of specificity >80%, FL-CNN achieved a much higher sensitivity (93.8% versus 82.0%, P < 0.001) with zero time overhead. Further experiments demonstrated that FL-CNN corrected >70% of the errors made by neurosurgeons. FL-CNN was also able to rapidly predict grade and Ki-67 level (AUC 0.810 and 0.625) of tumor specimens intraoperatively. CONCLUSION: Our study demonstrates that deep CNNs are better at capturing important information from fluorescence images than surgeons' evaluation during patient surgery. FL-CNN is highly promising to provide pathological diagnosis intraoperatively and assist neurosurgeons to obtain maximum resection safely. TRIAL REGISTRATION: ChiCTR ChiCTR2000029402. Registered 29 January 2020, retrospectively registered.


Assuntos
Inteligência Artificial , Glioma , Glioma/diagnóstico por imagem , Glioma/cirurgia , Humanos , Verde de Indocianina , Redes Neurais de Computação , Imagem Óptica
15.
Methods ; 177: 95-102, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31568822

RESUMO

Extracellular vesicles (EVs) have been emerging as a new class of cell-free therapy for the treatment of a variety of diseases, including cancer, tissue injuries, and inflammatory diseases. Reprograming native EVs by genetic engineering and other approaches offers an attractive prospect of extending therapeutic capabilities of EVs beyond their natural functions and properties. In this review article, we survey the state-of-the-art methods of EVs engineering and summarize major therapeutic applications of the reprogrammed EVs.


Assuntos
Engenharia Química/métodos , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares/metabolismo , Inflamação/terapia , Neoplasias/terapia , Engenharia de Proteínas/métodos , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/transplante , Expressão Gênica , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo
16.
Mol Ther ; 28(2): 536-547, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31843452

RESUMO

Exosomes are nanosized membranous vesicles secreted by a variety of cells. Due to their unique and pharmacologically important properties, cell-derived exosome nanoparticles have drawn significant interest for drug development. By genetically modifying exosomes with two distinct types of surface-displayed monoclonal antibodies, we have developed an exosome platform termed synthetic multivalent antibodies retargeted exosome (SMART-Exo) for controlling cellular immunity. Here, we apply this approach to human epidermal growth factor receptor 2 (HER2)-expressing breast cancer by engineering exosomes through genetic display of both anti-human CD3 and anti-human HER2 antibodies, resulting in SMART-Exos dually targeting T cell CD3 and breast cancer-associated HER2 receptors. By redirecting and activating cytotoxic T cells toward attacking HER2-expressing breast cancer cells, the designed SMART-Exos exhibited highly potent and specific anti-tumor activity both in vitro and in vivo. This work demonstrates preclinical feasibility of utilizing endogenous exosomes for targeted breast cancer immunotherapy and the SMART-Exos as a broadly applicable platform technology for the development of next-generation immuno-nanomedicines.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Micropartículas Derivadas de Células , Engenharia Genética , Terapia de Alvo Molecular , Animais , Biomarcadores Tumorais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Imunoterapia , Ativação Linfocitária , Camundongos , Modelos Biológicos , Nanopartículas , Receptor ErbB-2/antagonistas & inibidores , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Nanobiotechnology ; 19(1): 212, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34271928

RESUMO

Cerenkov luminescence imaging (CLI) is a novel optical imaging technique that has been applied in clinic using various radionuclides and radiopharmaceuticals. However, clinical application of CLI has been limited by weak optical signal and restricted tissue penetration depth. Various fluorescent probes have been combined with radiopharmaceuticals for improved imaging performances. However, as most of these probes only interact with Cerenkov luminescence (CL), the low photon fluence of CL greatly restricted it's interaction with fluorescent probes for in vivo imaging. Therefore, it is important to develop probes that can effectively convert energy beyond CL such as ß and γ to the low energy optical signals. In this study, a Eu3+ doped gadolinium oxide (Gd2O3:Eu) was synthesized and combined with radiopharmaceuticals to achieve a red-shifted optical spectrum with less tissue scattering and enhanced optical signal intensity in this study. The interaction between Gd2O3:Eu and radiopharmaceutical were investigated using 18F-fluorodeoxyglucose (18F-FDG). The ex vivo optical signal intensity of the mixture of Gd2O3:Eu and 18F-FDG reached 369 times as high as that of CLI using 18F-FDG alone. To achieve improved biocompatibility, the Gd2O3:Eu nanoparticles were then modified with polyvinyl alcohol (PVA), and the resulted nanoprobe PVA modified Gd2O3:Eu (Gd2O3:Eu@PVA) was applied in intraoperative tumor imaging. Compared with 18F-FDG alone, intraoperative administration of Gd2O3:Eu@PVA and 18F-FDG combination achieved a much higher tumor-to-normal tissue ratio (TNR, 10.24 ± 2.24 vs. 1.87 ± 0.73, P = 0.0030). The use of Gd2O3:Eu@PVA and 18F-FDG also assisted intraoperative detection of tumors that were omitted by preoperative positron emission tomography (PET) imaging. Further experiment of image-guided surgery demonstrated feasibility of image-guided tumor resection using Gd2O3:Eu@PVA and 18F-FDG. In summary, Gd2O3:Eu can achieve significantly optimized imaging property when combined with 18F-FDG in intraoperative tumor imaging and image-guided tumor resection surgery. It is expected that the development of the Gd2O3:Eu nanoparticle will promote investigation and application of novel nanoparticles that can interact with radiopharmaceuticals for improved imaging properties. This work highlighted the impact of the nanoprobe that can be excited by radiopharmaceuticals emitting CL, ß, and γ radiation for precisely imaging of tumor and intraoperatively guide tumor resection.


Assuntos
Gadolínio/química , Nanopartículas/química , Imagem Óptica/métodos , Compostos Radiofarmacêuticos/química , Cirurgia Assistida por Computador/métodos , Animais , Feminino , Fluordesoxiglucose F18 , Gadolínio/farmacologia , Luminescência , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/farmacologia
18.
Clin Exp Pharmacol Physiol ; 48(6): 837-845, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33527532

RESUMO

Ethanol-induced myocardial injury involves multiple pathophysiological processes including apoptosis. Empagliflozin (EMPA), is a novel hypoglycaemic drug which possesses multiple pharmacologically relevant protective effects, including anti-apoptotic, anti-inflammatory and antioxidant effects. However, whether EMPA treatment has a protective effect on ethanol-induced myocardial injury has not been assessed, to the best of our knowledge. Therefore, the aim of this study was to determine the effect of EMPA treatment on ethanol-induced myocardial injury and the underlying mechanism. An ethanol-induced myocardial injury model was established by culturing H9c2 cells treated with 200 mmol/L ethanol for 24 hours, and additional groups of ethanol treated cells were also treated with EMPA with or without SIRT1 inhibitors prior to ethanol treatment. Cell viability and apoptosis were assessed using a CCK-8 assay and flow cytometry, respectively. The expression of apoptosis-related proteins was assessed using western blotting. The results showed that EMPA pretreatment resulted in increased cell viability and a decrease in LDH activity. Moreover, EMPA pretreatment significantly reduced apoptosis of cardiomyocytes, and reduced the expression of cleaved caspase 3. Furthermore, EMPA increased the expression of SIRT1, increased the phosphorylation levels of Akt, and reduced the expression of PTEN. EMPA also reduced ethanol-induced mitochondrial apoptosis, increasing the Bcl-2/Bax ratio and the mitochondrial membrane potential. However, the cardioprotective effects of EMPA were abrogated when cells were pretreated with a SIRT1 inhibitor. In conclusion, EMPA can alleviate ethanol-induced myocardial injury by inhibiting mitochondrial apoptosis via the SIRT1/PTEN/Akt pathway. Therefore, EMPA may be a novel target for treatment of ethanol-induced myocardial injury.


Assuntos
Miócitos Cardíacos , Sirtuína 1 , Animais , Apoptose , Compostos Benzidrílicos , Caspase 3 , Etanol , Glucosídeos , Mitocôndrias , Traumatismo por Reperfusão Miocárdica , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2
19.
Med Res Rev ; 40(5): 1920-1949, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32391596

RESUMO

The ubiquitin-proteasome system (UPS) is a complex process that regulates protein stability and activity by the sequential actions of E1, E2 and E3 enzymes to influence diverse aspects of eukaryotic cells. However, due to the diversity of proteins in cells, substrate selection is a highly critical part of the process. As a key player in UPS, E3 ubiquitin ligases recruit substrates for ubiquitination specifically. Among them, RING E3 ubiquitin ligases which are the most abundant E3 ubiquitin ligases contribute to diverse cellular processes. The multisubunit cullin-RING ligases (CRLs) are the largest family of RING E3 ubiquitin ligases with tremendous plasticity in substrate specificity and regulate a vast array of cellular functions. The F-box protein Skp2 is a component of CRL1 (the prototype of CRLs) which is expressed in many tissues and participates in multiple cellular functions such as cell proliferation, metabolism, and tumorigenesis by contributing to the ubiquitination and subsequent degradation of several specific tumor suppressors. Most importantly, Skp2 plays a pivotal role in a plethora of cancer-associated signaling pathways. It enhances cell growth, accelerates cell cycle progression, promotes migration and invasion, and inhibits cell apoptosis among others. Hence, targeting Skp2 may represent a novel and attractive strategy for the treatment of different human cancers overexpressing this oncogene. In this review article, we summarized the known roles of Skp2 both in health and disease states in relation to the UPS.


Assuntos
Neoplasias , Complexo de Endopeptidases do Proteassoma , Proteínas Quinases Associadas a Fase S/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
20.
J Neuroinflammation ; 17(1): 164, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450881

RESUMO

BACKGROUND: Farnesoid X receptor (FXR) is a nuclear receptor that plays a critical role in controlling cell apoptosis in diverse diseases. Previous studies have shown that knocking out FXR improved cardiac function by reducing cardiomyocyte apoptosis in myocardial ischemic mice. However, the role of FXR after cerebral ischemia remains unknown. In this study, we explored the effects and mechanisms of FXR knockout (KO) on the functional recovery of mice post cerebral ischemia-reperfusion. METHODS: Adult male C57BL/6 wild type and FXR KO mice were subjected to 90-min transient middle cerebral artery occlusion (tMCAO). The mice were divided into five groups: sham, wild-type tMCAO, FXR KO tMCAO, wild-type tMCAO treated with calcium agonist Bayk8644, and FXR KO tMCAO treated with Bayk8644. FXR expression was examined using immunohistochemistry and Western blot. Brain infarct and brain atrophy volume were examined at 3 and 14 days after stroke respectively. Neurobehavioral tests were conducted up to 14 days after stroke. The protein levels of apoptotic factors (Bcl-2, Bax, and Cleaved caspase-3) and mRNA levels of pro-inflammatory factors (TNF-α, IL-6, IL-1ß, IL-17, and IL-18) were examined using Western blot and RT-PCR. TUNEL staining and calcium imaging were obtained using confocal and two-photon microscopy. RESULTS: The expression of FXR was upregulated after ischemic stroke, which is located in the nucleus of the neurons. FXR KO was found to reduce infarct volume and promote neurobehavioral recovery following tMCAO compared to the vehicle. The expression of apoptotic and pro-inflammatory factors decreased in FXR KO mice compared to the control. The number of NeuN+/TUNEL+ cells declined in the peri-infarct area of FXR KO mice compared to the vehicle. We further demonstrated that inhibition of FXR reduced calcium overload and addition of ionomycin could reverse this neuroprotective effect in vitro. What is more, in vivo results showed that enhancement of intracellular calcium concentrations could aggravate ischemic injury and reverse the neuroprotective effect of FXR KO in mice. CONCLUSIONS: FXR KO can promote neurobehavioral recovery and attenuate ischemic brain injury, inflammatory release, and neuronal apoptosis via reducing calcium influx, suggesting its role as a therapeutic target for stroke treatments.


Assuntos
Apoptose/fisiologia , Isquemia Encefálica/patologia , Encéfalo/patologia , Neurônios/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA