Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 673
Filtrar
1.
Cell ; 186(4): 850-863.e16, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803605

RESUMO

It is unknown whether pangolins, the most trafficked mammals, play a role in the zoonotic transmission of bat coronaviruses. We report the circulation of a novel MERS-like coronavirus in Malayan pangolins, named Manis javanica HKU4-related coronavirus (MjHKU4r-CoV). Among 86 animals, four tested positive by pan-CoV PCR, and seven tested seropositive (11 and 12.8%). Four nearly identical (99.9%) genome sequences were obtained, and one virus was isolated (MjHKU4r-CoV-1). This virus utilizes human dipeptidyl peptidase-4 (hDPP4) as a receptor and host proteases for cell infection, which is enhanced by a furin cleavage site that is absent in all known bat HKU4r-CoVs. The MjHKU4r-CoV-1 spike shows higher binding affinity for hDPP4, and MjHKU4r-CoV-1 has a wider host range than bat HKU4-CoV. MjHKU4r-CoV-1 is infectious and pathogenic in human airways and intestinal organs and in hDPP4-transgenic mice. Our study highlights the importance of pangolins as reservoir hosts of coronaviruses poised for human disease emergence.


Assuntos
Infecções por Coronavirus , Coronavirus , Dipeptidil Peptidase 4 , Pangolins , Animais , Humanos , Camundongos , Quirópteros , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Endopeptidases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Peptídeo Hidrolases/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Coronavirus/fisiologia
2.
Cell ; 182(1): 50-58.e8, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516571

RESUMO

COVID-19 has spread worldwide since 2019 and is now a severe threat to public health. We previously identified the causative agent as a novel SARS-related coronavirus (SARS-CoV-2) that uses human angiotensin-converting enzyme 2 (hACE2) as the entry receptor. Here, we successfully developed a SARS-CoV-2 hACE2 transgenic mouse (HFH4-hACE2 in C3B6 mice) infection model. The infected mice generated typical interstitial pneumonia and pathology that were similar to those of COVID-19 patients. Viral quantification revealed the lungs as the major site of infection, although viral RNA could also be found in the eye, heart, and brain in some mice. Virus identical to SARS-CoV-2 in full-genome sequences was isolated from the infected lung and brain tissues. Last, we showed that pre-exposure to SARS-CoV-2 could protect mice from severe pneumonia. Our results show that the hACE2 mouse would be a valuable tool for testing potential vaccines and therapeutics.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Pneumonia Viral/patologia , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Feminino , Humanos , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/virologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/genética , Pandemias , Peptidil Dipeptidase A/genética , SARS-CoV-2 , Tropismo Viral , Redução de Peso
3.
Cell ; 175(7): 1769-1779.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30392960

RESUMO

The fluid-mosaic model posits a liquid-like plasma membrane, which can flow in response to tension gradients. It is widely assumed that membrane flow transmits local changes in membrane tension across the cell in milliseconds, mediating long-range signaling. Here, we show that propagation of membrane tension occurs quickly in cell-attached blebs but is largely suppressed in intact cells. The failure of tension to propagate in cells is explained by a fluid dynamical model that incorporates the flow resistance from cytoskeleton-bound transmembrane proteins. Perturbations to tension propagate diffusively, with a diffusion coefficient Dσ ∼0.024 µm2/s in HeLa cells. In primary endothelial cells, local increases in membrane tension lead only to local activation of mechanosensitive ion channels and to local vesicle fusion. Thus, membrane tension is not a mediator of long-range intracellular signaling, but local variations in tension mediate distinct processes in sub-cellular domains.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Canais Iônicos/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Camundongos , Células NIH 3T3 , Ratos
4.
Nature ; 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39478224

RESUMO

Although coronaviruses use diverse receptors, the characterization of coronaviruses with unknown receptors has been impeded by a lack of infection models1,2. Here we introduce a strategy to engineer functional customized viral receptors (CVRs). The modular design relies on building artificial receptor scaffolds comprising various modules and generating specific virus-binding domains. We identify key factors for CVRs to functionally mimic native receptors by facilitating spike proteolytic cleavage, membrane fusion, pseudovirus entry and propagation for various coronaviruses. We delineate functional SARS-CoV-2 spike receptor-binding sites for CVR design and reveal the mechanism of cell entry promoted by the N-terminal domain-targeting S2L20-CVR. We generated CVR-expressing cells for 12 representative coronaviruses from 6 subgenera, most of which lack known receptors, and show that a pan-sarbecovirus CVR supports propagation of a propagation-competent HKU3 pseudovirus and of authentic RsHuB2019A3. Using an HKU5-specific CVR, we successfully rescued wild-type and ZsGreen-HiBiT-incorporated HKU5-1 (LMH03f) and isolated a HKU5 strain from bat samples. Our study demonstrates the potential of the CVR strategy for establishing native receptor-independent infection models, providing a tool for studying viruses that lack known susceptible target cells.

5.
Nature ; 618(7967): 981-985, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225998

RESUMO

Soils store more carbon than other terrestrial ecosystems1,2. How soil organic carbon (SOC) forms and persists remains uncertain1,3, which makes it challenging to understand how it will respond to climatic change3,4. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss5-7. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways4,6,8-11, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes12,13. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved7,14,15. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.


Assuntos
Sequestro de Carbono , Carbono , Ecossistema , Microbiologia do Solo , Solo , Carbono/análise , Carbono/metabolismo , Mudança Climática , Plantas , Solo/química , Conjuntos de Dados como Assunto , Aprendizado Profundo
6.
Mol Cell ; 81(10): 2135-2147.e5, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33713597

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.


Assuntos
COVID-19 , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , RNA Viral , SARS-CoV-2 , Animais , COVID-19/genética , COVID-19/metabolismo , Células CACO-2 , Chlorocebus aethiops , Humanos , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero
7.
J Immunol ; 213(2): 204-213, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38856712

RESUMO

Bats are the natural reservoir hosts of some viruses, some of which may spill over to humans and cause global-scale pandemics. Different from humans, bats may coexist with high pathogenic viruses without showing symptoms of diseases. As one of the most important first defenses, bat type I IFNs (IFN-Is) were thought to play a role during this virus coexistence and thus were studied in recent years. However, there are arguments about whether bats have a contracted genome locus or constitutively expressed IFNs, mainly due to species-specific findings. We hypothesized that because of the lack of pan-bat analysis, the common characteristics of bat IFN-Is have not been revealed yet. In this study, we characterized the IFN-I locus for nine Yangochiroptera bats and three Yinpterochiroptera bats on the basis of their high-quality bat genomes. We also compared the basal expression in six bats and compared the antiviral and antiproliferative activity and the thermostability of representative Rhinolophus bat IFNs. We found a dominance of unconventional IFNω-like responses in the IFN-I system, which is unique to bats. In contrast to IFNα-dominated IFN-I loci in the majority of other mammals, bats generally have shorter IFN-I loci with more unconventional IFNω-like genes (IFNω or related IFNαω), but with fewer or even no IFNα genes. In addition, bats generally have constitutively expressed IFNs, the highest expressed of which is more likely an IFNω-like gene. Likewise, the highly expressed IFNω-like protein also demonstrated the best antiviral activity, antiproliferative activity, or thermostability, as shown in a representative Rhinolophus bat species. Overall, we revealed pan-bat unique, to our knowledge, characteristics in the IFN-I system, which provide insights into our understanding of the innate immunity that contributes to a special coexistence between bats and viruses.


Assuntos
Quirópteros , Interferon Tipo I , Quirópteros/imunologia , Quirópteros/genética , Quirópteros/virologia , Animais , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Humanos , Antivirais , Imunidade Inata/genética , Filogenia
8.
Nature ; 579(7798): 270-273, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32015507

RESUMO

Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1-4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5-7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor-angiotensin converting enzyme II (ACE2)-as SARS-CoV.


Assuntos
Betacoronavirus/classificação , Betacoronavirus/genética , Quirópteros/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Surtos de Doenças , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Antivirais/sangue , Betacoronavirus/metabolismo , Betacoronavirus/ultraestrutura , COVID-19 , Linhagem Celular , China/epidemiologia , Chlorocebus aethiops , Feminino , Genoma Viral/genética , Humanos , Masculino , Peptidil Dipeptidase A/metabolismo , Filogenia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2 , Homologia de Sequência do Ácido Nucleico , Síndrome Respiratória Aguda Grave , Células Vero
9.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38197309

RESUMO

Although some pyroptosis-related (PR) prognostic models for cancers have been reported, pyroptosis-based features have not been fully discovered at the single-cell level in hepatocellular carcinoma (HCC). In this study, by deeply integrating single-cell and bulk transcriptome data, we systematically investigated significance of the shared pyroptotic signature at both single-cell and bulk levels in HCC prognosis. Based on the pyroptotic signature, a robust PR risk system was constructed to quantify the prognostic risk of individual patient. To further verify capacity of the pyroptotic signature on predicting patients' prognosis, an attention mechanism-based deep neural network classification model was constructed. The mechanisms of prognostic difference in the patients with distinct PR risk were dissected on tumor stemness, cancer pathways, transcriptional regulation, immune infiltration and cell communications. A nomogram model combining PR risk with clinicopathologic data was constructed to evaluate the prognosis of individual patients in clinic. The PR risk could also evaluate therapeutic response to neoadjuvant therapies in HCC patients. In conclusion, the constructed PR risk system enables a comprehensive assessment of tumor microenvironment characteristics, accurate prognosis prediction and rational therapeutic options in HCC.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Transcriptoma , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Comunicação Celular , Microambiente Tumoral/genética
11.
Small ; 20(35): e2401880, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38678520

RESUMO

Two-dimensional (2D) covalent organic frameworks (COFs) have a multilayer skeleton with a periodic π-conjugated molecular array, which can facilitate charge carrier transport within a COF layer. However, the lack of an effective charge carrier transmission pathway between 2D COF layers greatly limits their applications in electrocatalysis. Herein, by employing a side-chain polymerization strategy to form polythiophene along the nanochannels, a conjugated bridge is constructed between the COF layers. The as-synthesized fully conjugated COF (PTh-COF) exhibits high oxygen reduction reaction (ORR) activity with narrowed energy band gaps. Correspondingly, PTh-COF is tested as a metal-free cathode catalyst for anion exchange membrane fuel cells (AEMFCs) which showed a maximum power density of 176 mW cm-2 under a current density of 533 mA cm-2. The density functional theory (DFT) calculation reveals that interlayer conjugated polythiophene optimizes the electron cloud distribution, which therefore enhances the ORR performance. This work not only provides new insight into the construction of a fully conjugated covalent organic framework but also promotes the development of new metal-free ORR catalysts.

12.
J Virol ; 97(9): e0039523, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37655938

RESUMO

While the spike proteins from severe acute respiratory syndrome coronaviruses-1 and 2 (SARS-CoV and SARS-CoV-2) bind to host angiotensin-converting enzyme 2 (ACE2) to infect cells, the majority of bat sarbecoviruses cannot use ACE2 from any species. Despite their discovery almost 20 years ago, ACE2-independent sarbecoviruses have never been isolated from field samples, leading to the assumption these viruses pose little risk to humans. We have previously shown how spike proteins from a small group of ACE2-independent bat sarbecoviruses may possess the ability to infect human cells in the presence of exogenous trypsin. Here, we adapted our earlier findings into a virus isolation protocol and recovered two new ACE2-dependent viruses, RsYN2012 and RsYN2016A, as well as an ACE2-independent virus, RsHuB2019A. Although our stocks of RsHuB2019A rapidly acquired a tissue-culture adaption that rendered the spike protein resistant to trypsin, trypsin was still required for viral entry, suggesting limitations on the exogenous entry factors that support bat sarbecoviruses. Electron microscopy revealed that ACE2-independent sarbecoviruses have a prominent spike corona and share similar morphology to other coronaviruses. Our findings demonstrate a broader zoonotic threat posed by sarbecoviruses and shed light on the intricacies of coronavirus isolation and propagation in vitro. IMPORTANCE Several coronaviruses have been transmitted from animals to people, and 20 years of virus discovery studies have uncovered thousands of new coronavirus sequences in nature. Most of the animal-derived sarbecoviruses have never been isolated in culture due to cell incompatibilities and a poor understanding of the in vitro requirements for their propagation. Here, we built on our growing body of work characterizing viral entry mechanisms of bat sarbecoviruses in human cells and have developed a virus isolation protocol that allows for the exploration of these understudied viruses. Our protocol is robust and practical, leading to successful isolation of more sarbecoviruses than previous approaches and from field samples that had been collected over a 10-year longitudinal study.


Assuntos
Enzima de Conversão de Angiotensina 2 , Betacoronavirus , Quirópteros , Receptores Virais , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Quirópteros/virologia , População do Leste Asiático , Estudos Longitudinais , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tripsina , Betacoronavirus/isolamento & purificação , Zoonoses
13.
J Virol ; 97(10): e0091623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772826

RESUMO

IMPORTANCE: Gaining insight into the cell-entry mechanisms of swine acute diarrhea syndrome coronavirus (SADS-CoV) is critical for investigating potential cross-species infections. Here, we demonstrated that pretreatment of host cells with tunicamycin decreased SADS-CoV attachment efficiency, indicating that N-linked glycosylation of host cells was involved in SADS-CoV entry. Common N-linked sugars Neu5Gc and Neu5Ac did not interact with the SADS-CoV S1 protein, suggesting that these molecules were not involved in SADS-CoV entry. Additionally, various host proteases participated in SADS-CoV entry into diverse cells with different efficiencies. Our findings suggested that SADS-CoV may exploit multiple pathways to enter cells, providing insights into intervention strategies targeting the cell entry of this virus.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Endopeptidases , Glicoproteínas , Doenças dos Suínos , Suínos , Internalização do Vírus , Animais , Alphacoronavirus/fisiologia , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Endopeptidases/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Suínos/virologia , Doenças dos Suínos/enzimologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Internalização do Vírus/efeitos dos fármacos , Tunicamicina/farmacologia , Glicosilação
14.
J Virol ; 97(2): e0171922, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36688655

RESUMO

Coronavirus disease 2019 (COVID-19), which is caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is the most severe emerging infectious disease in the current century. The discovery of SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins in South Asian countries indicates that SARS-CoV-2 likely originated from wildlife. To date, two SARSr-CoV-2 strains have been isolated from pangolins seized in Guangxi and Guangdong by the customs agency of China, respectively. However, it remains unclear whether these viruses cause disease in animal models and whether they pose a transmission risk to humans. In this study, we investigated the biological features of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin (Manis javanica) captured by the Guangxi customs agency, termed MpCoV-GX, in terms of receptor usage, cell tropism, and pathogenicity in wild-type BALB/c mice, human angiotensin-converting enzyme 2 (ACE2)-transgenic mice, and human ACE2 knock-in mice. We found that MpCoV-GX can utilize ACE2 from humans, pangolins, civets, bats, pigs, and mice for cell entry and infect cell lines derived from humans, monkeys, bats, minks, and pigs. The virus could infect three mouse models but showed limited pathogenicity, with mild peribronchial and perivascular inflammatory cell infiltration observed in lungs. Our results suggest that this SARSr-CoV-2 virus from pangolins has the potential for interspecies infection, but its pathogenicity is mild in mice. Future surveillance among these wildlife hosts of SARSr-CoV-2 is needed to monitor variants that may have higher pathogenicity and higher spillover risk. IMPORTANCE SARS-CoV-2, which likely spilled over from wildlife, is the third highly pathogenic human coronavirus. Being highly transmissible, it is perpetuating a pandemic and continuously posing a severe threat to global public health. Several SARS-CoV-2-related coronaviruses (SARSr-CoV-2) in bats and pangolins have been identified since the SARS-CoV-2 outbreak. It is therefore important to assess their potential of crossing species barriers for better understanding of their risk of future emergence. In this work, we investigated the biological features and pathogenicity of a SARSr-CoV-2 strain isolated from a smuggled Malayan pangolin, named MpCoV-GX. We found that MpCoV-GX can utilize ACE2 from 7 species for cell entry and infect cell lines derived from a variety of mammalian species. MpCoV-GX can infect mice expressing human ACE2 without causing severe disease. These findings suggest the potential of cross-species transmission of MpCoV-GX, and highlight the need of further surveillance of SARSr-CoV-2 in pangolins and other potential animal hosts.


Assuntos
COVID-19 , Especificidade de Hospedeiro , Pangolins , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/genética , Linhagem Celular , China , COVID-19/transmissão , COVID-19/virologia , Pulmão/patologia , Pulmão/virologia , Camundongos Transgênicos , Pangolins/virologia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Suínos , Quirópteros
15.
J Virol ; 97(9): e0079023, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37607058

RESUMO

Bats carry genetically diverse severe acute respiratory syndrome-related coronaviruses (SARSr-CoVs). Some of them utilize human angiotensin-converting enzyme 2 (hACE2) as a receptor and cannot efficiently replicate in wild-type mice. Our previous study demonstrated that the bat SARSr-CoV rRsSHC014S induces respiratory infection and lung damage in hACE2 transgenic mice but not wild-type mice. In this study, we generated a mouse-adapted strain of rRsSHC014S, which we named SMA1901, by serial passaging of wild-type virus in BALB/c mice. SMA1901 showed increased infectivity in mouse lungs and induced interstitial lung pneumonia in both young and aged mice after intranasal inoculation. Genome sequencing revealed mutations in not only the spike protein but the whole genome, which may be responsible for the enhanced pathogenicity of SMA1901 in wild-type BALB/c mice. SMA1901 induced age-related mortality similar to that observed in SARS and COVID-19. Drug testing using antibodies and antiviral molecules indicated that this mouse-adapted virus strain can be used to test prophylactic and therapeutic drug candidates against SARSr-CoVs. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlights the importance of developing a powerful animal model to evaluate the antibodies and antiviral drugs. We acquired the mouse-adapted strain of a bat-origin coronavirus named SMA1901 by natural serial passaging of rRsSHC014S in BALB/c mice. The SMA1901 infection caused interstitial pneumonia and inflammatory immune responses in both young and aged BALB/c mice after intranasal inoculation. Our model exhibited age-related mortality similar to SARS and COVID-19. Therefore, our model will be of high value for investigating the pathogenesis of bat SARSr-CoVs and could serve as a prospective test platform for prophylactic and therapeutic candidates.


Assuntos
Quirópteros , Camundongos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Camundongos/virologia , Quirópteros/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/classificação , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Camundongos Endogâmicos BALB C , COVID-19/mortalidade , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Síndrome Respiratória Aguda Grave/mortalidade , Inoculações Seriadas , Antivirais/farmacologia , Antivirais/uso terapêutico , Anticorpos Antivirais/farmacologia , Anticorpos Antivirais/uso terapêutico , Zoonoses Virais/tratamento farmacológico , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/virologia , Envelhecimento , Avaliação Pré-Clínica de Medicamentos
16.
PLoS Pathog ; 18(1): e1010270, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35089988

RESUMO

ASFV is a large DNA virus that is highly pathogenic in domestic pigs. How this virus is sensed by the innate immune system as well as why it is so virulent remains enigmatic. In this study, we show that the ASFV genome contains AT-rich regions that are recognized by the DNA-directed RNA polymerase III (Pol-III), leading to viral RNA sensor RIG-I-mediated innate immune responses. We further show that ASFV protein I267L inhibits RNA Pol-III-RIG-I-mediated innate antiviral responses. I267L interacts with the E3 ubiquitin ligase Riplet, disrupts Riplet-RIG-I interaction and impairs Riplet-mediated K63-polyubiquitination and activation of RIG-I. I267L-deficient ASFV induces higher levels of interferon-ß, and displays compromised replication both in primary macrophages and pigs compared with wild-type ASFV. Furthermore, I267L-deficiency attenuates the virulence and pathogenesis of ASFV in pigs. These findings suggest that ASFV I267L is an important virulence factor by impairing innate immune responses mediated by the RNA Pol-III-RIG-I axis.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Imunidade Inata/imunologia , Fatores de Virulência/imunologia , Virulência/imunologia , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/imunologia , Animais , RNA Polimerase III/imunologia , Receptores de Superfície Celular/imunologia , Suínos
17.
Opt Express ; 32(6): 9219-9226, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571160

RESUMO

Space-air-sea communication networks are of great interest to meet the demand for close and seamless connections between space, land, and ocean environments. Wireless light communication can expand network coverage from land to the sky and even the ocean while offering enhanced anti-interference capabilities. Here, we propose and establish an all-light communication network (ALCN) for space-air-sea integrated interconnection, which merges underwater blue light communication, wireless white light communication, solar-blind deep ultraviolet light communication and laser diode-based space communication. Ethernet switches and the Transmission Control Protocol are used for space-air-sea light interconnection. Experimental results show that the ALCN supports wired and wireless device access simultaneously. Bidirectional data transmission between network nodes is demonstrated, with a maximum packet loss ratio of 5.80% and a transmission delay below 74 ms. The proposed ALCN provides a promising scheme for future space-air-sea interconnections towards multiterminal, multiservice applications.

18.
Opt Express ; 32(8): 13955-13964, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859353

RESUMO

InGaN/GaN multiple quantum well (MQW) diodes perform multiple functions, such as optical emission, modulation and reception. In particular, the partially overlapping spectral region between the electroluminescence (EL) and responsivity spectra of each diode results in each diode being able to sense light from another diode of the same MQW structure. Here, we present a noncontact, optical proximity sensing system by integrating an MQW-based light transmitter and detector into a tiny GaN-on-sapphire chip. Changes in the external environment modulate the light emitted from the transmitter. Reflected light is received by the on-chip MQW detector, wherein the carried external modulation information is converted into electrical signals that can be extracted. The maximum detection proximity is approximately 17 mm, and the displacement detection accuracy is within 1 mm. Based on the detection of distance, we extend the application of the sensor to vibration and pressure detection. This monolithic integration design can replace external discrete light transmitter and detector systems to miniaturize reflective sensor architectures, enabling the development of novel optical sensors.

19.
Opt Express ; 32(6): 10732-10740, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571277

RESUMO

Light-emitting diodes (LEDs), pivotal for solid-state illumination (SSL) and highly regarded as potential candidates in visible light communication (VLC) systems, have garnered significant interest as a solution to alleviate the congested radio frequency spectrum in next-generation communications. Addressing the challenge of extremely limited bandwidth due to the low response of phosphor in conventional illumination, our research focuses on an AlGaInP-based amber LED. This LED represents a promising avenue for phosphor-free, high-speed VLC applications when used in conjunction with the prevalent blue LED technology based on nitride materials. The fabricated AlGaInP amber LED, with a mesa diameter of 100 µm2, has undergone comprehensive optoelectronic property and transmission performance characterization. We have successfully demonstrated a proof-of-concept for VLC using the amber LED, achieving a data transmission rate of 2.94 Gb/s that complies with the forward-error-correction (FEC) standard of 3.8 × 10-3, utilizing adaptive bit and power loading with discrete multitone (BPL-DMT) modulation.

20.
Opt Express ; 32(12): 21553-21562, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859506

RESUMO

In this paper, a new method for rotational angle and speed measurements is proposed by integrating a GaN optoelectronic chip with a stepped disc. The optoelectronic chip that integrates a light-emitting diode (LED) and a photodiode (PD) is fabricated by wafer-level microfabrication. The disc is designed with a spiral staircase shape, and has increasing thickness distribution along the circumferential direction. The sensing mechanism is that the optoelectronic chip measures angle-dependent intensity change of the light reflected off the stepped disc. Through a series of performance tests, the chip is highly sensitive to a continuous rotation from 0 ∘ to 360 ∘, and produces photocurrent to indicate the rotational angle and speed. A rotational speed up to 5000 rpm is measured with a relative error less than 1.27%. The developed sensing architecture provides an alternative solution for constructing a low-cost, miniaturized, and high-efficiency rotational angle and speed sensing system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA