RESUMO
Van der Waals encapsulation of two-dimensional materials in hexagonal boron nitride (hBN) stacks is a promising way to create ultrahigh-performance electronic devices1-4. However, contemporary approaches for achieving van der Waals encapsulation, which involve artificial layer stacking using mechanical transfer techniques, are difficult to control, prone to contamination and unscalable. Here we report the transfer-free direct growth of high-quality graphene nanoribbons (GNRs) in hBN stacks. The as-grown embedded GNRs exhibit highly desirable features being ultralong (up to 0.25 mm), ultranarrow (<5 nm) and homochiral with zigzag edges. Our atomistic simulations show that the mechanism underlying the embedded growth involves ultralow GNR friction when sliding between AA'-stacked hBN layers. Using the grown structures, we demonstrate the transfer-free fabrication of embedded GNR field-effect devices that exhibit excellent performance at room temperature with mobilities of up to 4,600 cm2 V-1 s-1 and on-off ratios of up to 106. This paves the way for the bottom-up fabrication of high-performance electronic devices based on embedded layered materials.
RESUMO
Studies of two-dimensional electron systems in a strong magnetic field revealed the quantum Hall effect1, a topological state of matter featuring a finite Chern number C and chiral edge states2,3. Haldane4 later theorized that Chern insulators with integer quantum Hall effects could appear in lattice models with complex hopping parameters even at zero magnetic field. The ABC-trilayer graphene/hexagonal boron nitride (ABC-TLG/hBN) moiré superlattice provides an attractive platform with which to explore Chern insulators because it features nearly flat moiré minibands with a valley-dependent, electrically tunable Chern number5,6. Here we report the experimental observation of a correlated Chern insulator in an ABC-TLG/hBN moiré superlattice. We show that reversing the direction of the applied vertical electric field switches the moiré minibands of ABC-TLG/hBN between zero and finite Chern numbers, as revealed by large changes in magneto-transport behaviour. For topological hole minibands tuned to have a finite Chern number, we focus on quarter filling, corresponding to one hole per moiré unit cell. The Hall resistance is well quantized at h/2e2 (where h is Planck's constant and e is the charge on the electron), which implies C = 2, for a magnetic field exceeding 0.4 tesla. The correlated Chern insulator is ferromagnetic, exhibiting substantial magnetic hysteresis and a large anomalous Hall signal at zero magnetic field. Our discovery of a C = 2 Chern insulator at zero magnetic field should open up opportunities for discovering correlated topological states, possibly with topological excitations7, in nearly flat and topologically nontrivial moiré minibands.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Interfacing molecular machines to inorganic nanoparticles can, in principle, lead to hybrid nanomachines with extended functions. Here we demonstrate a ligand engineering approach to develop atomically precise hybrid nanomachines by interfacing gold nanoclusters with tetraphenylethylene molecular rotors. When gold nanoclusters are irradiated with near-infrared light, the rotation of surface-decorated tetraphenylethylene moieties actively dissipates the absorbed energy to sustain the photothermal nanomachine with an intact structure and steady efficiency. Solid-state nuclear magnetic resonance and femtosecond transient absorption spectroscopy reveal that the photogenerated hot electrons are rapidly cooled down within picoseconds via electron-phonon coupling in the nanomachine. We find that the nanomachine remains structurally and functionally intact in mammalian cells and in vivo. A single dose of near-infrared irradiation can effectively ablate tumours without recurrence in tumour-bearing mice, which shows promise in the development of nanomachine-based theranostics.
Assuntos
Nanopartículas , Neoplasias , Estilbenos , Animais , Camundongos , Fototerapia/métodos , Nanopartículas/química , Ouro/química , MamíferosRESUMO
Understanding the mechanism of high-transition-temperature (high-Tc) superconductivity is a central problem in condensed matter physics. It is often speculated that high-Tc superconductivity arises in a doped Mott insulator1 as described by the Hubbard model2-4. An exact solution of the Hubbard model, however, is extremely challenging owing to the strong electron-electron correlation in Mott insulators. Therefore, it is highly desirable to study a tunable Hubbard system, in which systematic investigations of the unconventional superconductivity and its evolution with the Hubbard parameters can deepen our understanding of the Hubbard model. Here we report signatures of tunable superconductivity in an ABC-trilayer graphene (TLG) and hexagonal boron nitride (hBN) moiré superlattice. Unlike in 'magic angle' twisted bilayer graphene, theoretical calculations show that under a vertical displacement field, the ABC-TLG/hBN heterostructure features an isolated flat valence miniband associated with a Hubbard model on a triangular superlattice5,6 where the bandwidth can be tuned continuously with the vertical displacement field. Upon applying such a displacement field we find experimentally that the ABC-TLG/hBN superlattice displays Mott insulating states below 20 kelvin at one-quarter and one-half fillings of the states, corresponding to one and two holes per unit cell, respectively. Upon further cooling, signatures of superconductivity ('domes') emerge below 1 kelvin for the electron- and hole-doped sides of the one-quarter-filling Mott state. The electronic behaviour in the ABC-TLG/hBN superlattice is expected to depend sensitively on the interplay between the electron-electron interaction and the miniband bandwidth. By varying the vertical displacement field, we demonstrate transitions from the candidate superconductor to Mott insulator and metallic phases. Our study shows that ABC-TLG/hBN heterostructures offer attractive model systems in which to explore rich correlated behaviour emerging in the tunable triangular Hubbard model.
RESUMO
Graphene nanoribbons (GNRs), quasi one-dimensional (1D) narrow strips of graphene, have shown promise for high-performance nanoelectronics due to their exceptionally high carrier mobility and structurally tunable bandgaps. However, producing chirality-uniform GNRs on insulating substrates remains a big challenge. Here, we report the successful growth of bilayer GNRs with predominantly armchair chirality and ultranarrow widths (<5 nm) on insulating hexagonal boron nitride (h-BN) substrates using chemical vapor deposition (CVD). The growth of GNRs is catalyzed by transition metal nanoparticles, including Fe, Co, and Ni, through a unique tip-growth mechanism. Notably, GNRs catalyzed by Ni exhibit a high purity (97.3%) of armchair chirality. Electron transport measurements indicate that the ultrathin bilayer armchair GNRs exhibit quasi-metallic behavior. This quasi-metallicity is further supported by density functional theory (DFT) calculations, which reveal a significantly reduced bandgap in bilayer armchair GNRs. The chirality-specific GNRs reported here offer promising advancements for the application of graphene in nanoelectronics.
RESUMO
BACKGROUND: It appears that tumour-infiltrating neoantigen-reactive CD8 + T (Neo T) cells are the primary driver of immune responses to gastrointestinal cancer in patients. However, the conventional method is very time-consuming and complex for identifying Neo T cells and their corresponding T cell receptors (TCRs). METHODS: By mapping neoantigen-reactive T cells from the single-cell transcriptomes of thousands of tumour-infiltrating lymphocytes, we developed a 26-gene machine learning model for the identification of neoantigen-reactive T cells. RESULTS: In both training and validation sets, the model performed admirably. We discovered that the majority of Neo T cells exhibited notable differences in the biological processes of amide-related signal pathways. The analysis of potential cell-to-cell interactions, in conjunction with spatial transcriptomic and multiplex immunohistochemistry data, has revealed that Neo T cells possess potent signalling molecules, including LTA, which can potentially engage with tumour cells within the tumour microenvironment, thereby exerting anti-tumour effects. By sequencing CD8 + T cells in tumour samples of patients undergoing neoadjuvant immunotherapy, we determined that the fraction of Neo T cells was significantly and positively linked with the clinical benefit and overall survival rate of patients. CONCLUSION: This method expedites the identification of neoantigen-reactive TCRs and the engineering of neoantigen-reactive T cells for therapy.
Assuntos
Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Neoplasias Gastrointestinais , Linfócitos do Interstício Tumoral , Aprendizado de Máquina , Análise de Célula Única , Humanos , Linfócitos T CD8-Positivos/imunologia , Neoplasias Gastrointestinais/imunologia , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Análise de Célula Única/métodos , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Linfócitos do Interstício Tumoral/imunologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , TranscriptomaRESUMO
BACKGROUND: Helicobacter pylori (H. pylori) poses serious threats to human health. TikTok (Douyin in Chinese), a major social media platform focused on sharing short videos, has demonstrated great potential in spreading health information, including information related to H. pylori infection. This study aims to evaluate the content and quality of the information shared in TikTok videos about H. pylori infection in mainland China. METHODS: We collected a sample of 116 videos in Chinese related to H. pylori infection from TikTok. Video contents were evaluated by the coding schema proposed by Goobie et al., and the Hexagonal Radar Schema was used to intuitively display the spotlight and weight of each aspect of the videos. The DISCERN questionnaire was used to evaluate the quality of the videos. RESULTS: We identified two major sources of videos related to H. pylori: individual users (n = 89) and organizational users (n = 27). Regarding content, the Hexagonal Radar Charts showed that more than 35% of the videos delivered moderate to high quality content (>1 point) in terms of definition, symptoms and management of the disease, whereas risk factors, evaluation and outcomes of the disease were less discussed. The DISCERN classification data showed that 0.9% of the videos were "very poor," 5.2% "poor," 68.7% "fair," 20.0% "good," and only 5.2% "excellent". Regarding total DISCERN scores, videos published by nonprofit organizations had the highest scores, followed by videos uploaded by health professionals. CONCLUSION: Although the overall quality of TikTok videos related to H. pylori infection was medium, users should be careful when obtaining information related to H. pylori infection on TikTok and opt for videos uploaded by nonprofit organizations and health professionals.
Assuntos
Informação de Saúde ao Consumidor , Infecções por Helicobacter , Mídias Sociais , Humanos , Estudos Transversais , Helicobacter pyloriRESUMO
ABC-stacked trilayer graphene on boron nitride (ABC-TLG/hBN) moiré superlattices provides a tunable platform for exploring Wigner crystal states in which the electron correlation can be controlled by electric and magnetic fields. Here we report the observation of magnetic field-stabilized Wigner crystal states in a ABC-TLG/hBN. We show that correlated insulating states emerge at multiple fractional and integer fillings corresponding to ν = 1/3, 2/3, 1, 4/3, 5/3, and 2 electrons per moiré lattice site under a magnetic field. These correlated insulating states can be attributed to generalized Mott states for the integer fillings and generalized Wigner crystal states for the fractional fillings. The generalized Wigner crystal states are stabilized by a vertical magnetic field and are strongest at one magnetic flux quantum per three moiré superlattices. The ν = 2 insulating state persists up to 30 T, which can be described by a Mott-Hofstadter transition at a high magnetic field.
RESUMO
Damage-free transfer of large-area two-dimensional (2D) materials is indispensable to unleash their full potentials in a wide range of electronic, photonic, and biochemical applications. However, the all-surface nature of 2D materials renders many of them vulnerable to surrounding environments, especially etchants and water involved during wet transfer process. Up to now, a scalable and damage-free transfer method for sensitive 2D materials is still lacking. Here, we report a general damage-free transfer method for sensitive 2D materials. The as-transferred 2D materials exhibit well-preserved structural integrity and unaltered physical properties. We further develop a facile TEM sample preparation technique that allows direct recycling of materials on TEM grids with high fidelity. This recycling technique provides an unprecedented opportunity to precisely relate structural characterization with physical/chemical/electrical probing for the same samples. This method can be readily generalized to diverse nanomaterials for large-area damage-free transfer and enables in-depth investigation of structure-property relationship.
Assuntos
Nanoestruturas , Eletrônica/métodos , Nanoestruturas/químicaRESUMO
The flat bands resulting from moiré superlattices exhibit fascinating correlated electron phenomena such as correlated insulators, ( Nature 2018, 556 (7699), 80-84), ( Nature Physics 2019, 15 (3), 237) superconductivity, ( Nature 2018, 556 (7699), 43-50), ( Nature 2019, 572 (7768), 215-219) and orbital magnetism. ( Science 2019, 365 (6453), 605-608), ( Nature 2020, 579 (7797), 56-61), ( Science 2020, 367 (6480), 900-903) Such magnetism has been observed only at particular integer multiples of n0, the density corresponding to one electron per moiré superlattice unit cell. Here, we report the experimental observation of ferromagnetism at noninteger filling (NIF) of a flat Chern band in a ABC-TLG/hBN moiré superlattice. This state exhibits prominent ferromagnetic hysteresis behavior with large anomalous Hall resistivity in a broad region of densities centered in the valence miniband at n = -2.3n0. We observe that, not only the magnitude of the anomalous Hall signal, but also the sign of the hysteretic ferromagnetic response can be modulated by tuning the carrier density and displacement field. Rotating the sample in a fixed magnetic field demonstrates that the ferromagnetism is highly anisotropic and likely purely orbital in character.
RESUMO
BACKGROUND: Phytophthora infestans causes late blight, threatening potato production. The tropane alkaloid scopolamine from some industrial plants (Datura, Atropa, etc.) has a broad-spectrum bacteriostatic effect, but its effect on P. infestans is unknown. RESULTS: In the present study, scopolamine inhibited the mycelial growth of phytopathogenic oomycete P. infestans, and the half-maximal inhibitory concentration (IC50 ) was 4.25 g L-1 . The sporangia germination rates were 61.43%, 16.16%, and 3.99% at concentrations of zero (control), 0.5 IC50 , and IC50 , respectively. The sporangia viability of P. infestans was significantly reduced after scopolamine treatment through propidium iodide and fluorescein diacetate staining, speculating that scopolamine destroyed cell membrane integrity. The detached potato tuber experiment demonstrated that scopolamine lessened the pathogenicity of P. infestans in potato tubers. Under stress conditions, scopolamine showed good inhibition of P. infestans, indicating that scopolamine could be used in multiple adverse conditions. The combination effect of scopolamine and the chemical pesticide Infinito on P. infestans was more effective than the use of scopolamine or Infinito alone. Moreover, transcriptome analysis suggested that scopolamine leaded to a downregulation of most P. infestans genes, functioning in cell growth, cell metabolism, and pathogenicity. CONCLUSION: To our knowledge, this is the first study to detect scopolamine inhibitory activity against P. infestans. Also, our findings highlight the potential of scopolamine as an eco-friendly option for controlling late blight in the future. © 2023 Society of Chemical Industry.
RESUMO
Electrostatic gating lies in the heart of field effect transistor (FET) devices and modern integrated circuits. To achieve efficient gate tunability, the gate electrode has to be placed very close to the conduction channel, typically a few nanometers. Remote control of a FET device through a gate electrode located far away is highly desirable, because it not only reduces the complexity of device fabrication, but also enables the design of novel devices with new functionalities. Here, a non-local electrostatic gating effect in graphene devices using scanning near-field optical microscopy (SNOM)-a technique that can probe local charge density in graphene-is reported. Remarkably, the charge density of the graphene region tens of micrometers away from a local gate can be efficiently tuned. The observed non-local gating effect is initially driven by an in-plane electric field induced by the quantum capacitance of graphene, and further largely enhanced by adsorbed polarized water molecules. This study reveals a non-local phenomenon of Dirac electrons, provides a deep understanding of in-plane screening from Dirac electrons, and paves the way for designing novel electronic devices with remote gate control.
RESUMO
By combining angle-resolved photoemission spectroscopy, scanning tunneling microscopy, atomic force microscope based piezoresponse force microscopy and first-principles calculations, we have studied the low-energy band structure, atomic structure, and charge polarization on the surface of a topological semimetal candidate TaNiTe_{5}. Dirac-like surface states were observed on the (010) surface by angle-resolved photoemission spectroscopy, consistent with the first-principles calculations. On the other hand, piezoresponse force microscopy reveals a switchable ferroelectriclike polarization on the same surface. We propose that the noncentrosymmetric surface relaxation observed by scanning tunneling microscopy could be the origin of the observed ferroelectriclike state in this novel material. Our findings provide a new platform with the coexistence of a ferroelectriclike surface charge distribution and novel surface states.
RESUMO
Interacting electrons confined in one dimension are generally described by the Luttinger liquid formalism, where the low-energy electronic dispersion is assumed to be linear and the resulting plasmonic excitations are non-interacting. Instead, a Luttinger liquid in one-dimensional materials with nonlinear electronic bands is expected to show strong plasmon-plasmon interactions, but an experimental demonstration of this behaviour has been lacking. Here, we combine infrared nano-imaging and electronic transport to investigate the behaviour of plasmonic excitations in semiconducting single-walled carbon nanotubes with carrier density controlled by electrostatic gating. We show that both the propagation velocity and the dynamic damping of plasmons can be tuned continuously, which is well captured by the nonlinear Luttinger liquid theory. These results contrast with the gate-independent plasmons observed in metallic nanotubes, as expected for a linear Luttinger liquid. Our findings provide an experimental demonstration of one-dimensional electron dynamics beyond the conventional linear Luttinger liquid paradigm and are important for understanding excited-state properties in one dimension.
RESUMO
Electron valley, a degree of freedom that is analogous to spin, can lead to novel topological phases in bilayer graphene. A tunable bandgap can be induced in bilayer graphene by an external electric field, and such gapped bilayer graphene is predicted to be a topological insulating phase protected by no-valley mixing symmetry, featuring quantum valley Hall effects and chiral edge states. Observation of such chiral edge states, however, is challenging because inter-valley scattering is induced by atomic-scale defects at real bilayer graphene edges. Recent theoretical work has shown that domain walls between AB- and BA-stacked bilayer graphene can support protected chiral edge states of quantum valley Hall insulators. Here we report an experimental observation of ballistic (that is, with no scattering of electrons) conducting channels at bilayer graphene domain walls. We employ near-field infrared nanometre-scale microscopy (nanoscopy) to image in situ bilayer graphene layer-stacking domain walls on device substrates, and we fabricate dual-gated field effect transistors based on the domain walls. Unlike single-domain bilayer graphene, which shows gapped insulating behaviour under a vertical electrical field, bilayer graphene domain walls feature one-dimensional valley-polarized conducting channels with a ballistic length of about 400 nanometres at 4 kelvin. Such topologically protected one-dimensional chiral states at bilayer graphene domain walls open up opportunities for exploring unique topological phases and valley physics in graphene.
RESUMO
Electron tunneling spectroscopy is a powerful technique to probe the unique physical properties of one-dimensional (1D) single-walled carbon nanotubes (SWNTs), such as the van Hove singularities in the density of states or the power-law tunneling probability of a Luttinger liquid. However, little is known about the tunneling behavior between two 1D SWNTs over a large energy spectrum. Here, we investigate the electron tunneling behavior between two crossed SWNTs across a wide spectral window up to 2 eV in the unique carbon nanotube-hexagonal boron nitride-carbon nanotube heterojunctions. We observe many sharp resonances in the differential tunneling conductance at different bias voltages applied between the SWNTs. These resonances can be attributed to elastic tunneling into the van Hove singularities of different 1D subbands in both SWNTs, and they allow us to determine the quasi-particle bandgaps and higher-lying 1D subbands in SWNTs on the insulating substrate.
RESUMO
Polaritons in two-dimensional (2D) materials have shown their unique capabilities to concentrate light into deep subwavelength scales. Precise control of the excitation and propagation of 2D polaritons has remained a central challenge for future on-chip nanophotonic devices and circuits. To solve this issue, we exploit Cherenkov radiation, a classic physical phenomenon that occurs when a charged particle moves at a velocity greater than the phase velocity of light in that medium, in low-dimensional material heterostructures. Here, we report an experimental observation of Cherenkov phonon polariton wakes emitted by superluminal one-dimensional plasmon polaritons in a silver nanowire and hexagonal boron nitride heterostructure using near-field infrared nanoscopy. The observed Cherenkov radiation direction and radiation rate exhibit large tunability through varying the excitation frequency. Such tunable Cherenkov phonon polaritons provide opportunities for novel deep subwavelength-scale manipulation of light and nanoscale control of energy flow in low-dimensional material heterostructures.
RESUMO
BACKGROUND & AIMS: The EncephalApp Stroop test is a high-sensitivity but low-specificity test that has been used to identify patients with covert hepatic encephalopathy (CHE). We aimed to develop a new strategy to detect CHE, combining EncephalApp Stroop test score with scores from subtests of the psychometric hepatic encephalopathy scoring system (PHES). METHODS: We performed a survey of 569 adult volunteers (229 men) in 9 communities in Shanghai, China, administering the EncephalApp Stroop test to determine the range of scores in the general population. Data from the standard PHES, including the number connection test-A, number connection test-B (NCT-B), line tracing test, serial dotting test (SDT), and digit symbol test, were used as the reference standard for diagnosis of CHE. A combination of the EncephalApp Stroop with subtests of the PHES was used to establish a new strategy for CHE diagnosis. We validated our findings using data from 160 patients with cirrhosis from 5 centers China. RESULTS: We determined the range of EncephalApp Stroop test scores for the volunteers of different decades of age, education levels, and sexes. Age, education level, and sex were independently associated with EncephalApp Stroop test scores. A combination of scores from the EncephalApp Stroop test, the NCT-B, and the SDT identified patients with CHE with the highest level of accuracy, when the standard PHES was used as the reference standard. A combination of scores of 187 sec for the EncephalApp Stroop test and below -1 for the NCT-B or below -1 for the SDT identified patients with CHE with an area under the curve (AUC) of 0.86, 81.0% sensitivity, and 91.9% specificity, and 87.5% accuracy. In the validation cohort, these cutoff scores identified patients with CHE with an AUC of 0.88, 97.1% sensitivity, 79.3% specificity, and 86.9% accuracy. The average time to calculate this score was 374±140 sec, compared 424±115 sec for the entire PHES. CONCLUSION: Scores from the EncephalApp Stroop test, NCT-B, and SDT identify patients with CHE with approximately 87% accuracy, and in a much shorter time than the standard PHES. This score combination could be a valid and convenient method for identifying patients with CHE. chictr.org.cn number, ChiCTR-EDC-17012007, ChiCTR1800019954.
Assuntos
Encefalopatia Hepática , Adulto , China , Encefalopatia Hepática/diagnóstico , Humanos , Cirrose Hepática , Masculino , Psicometria , Teste de StroopRESUMO
Strain plays an important role in condensed matter physics and materials science because it can strongly modify the mechanical, electrical, and optical properties of a material and even induce a structural phase transition. Strain effects are especially interesting in atomically thin two-dimensional (2D) materials, where unusually large strain can be achieved without breaking them. Measuring the strain distribution in 2D materials at the nanometer scale is therefore greatly important but is extremely challenging experimentally. Here, we use near-field infrared nanoscopy to demonstrate phonon polariton-assisted mapping and quantitative analysis of strain in atomically thin polar crystals of hexagonal boron nitride (hBN) at the nanoscale. A local strain as low as 0.01% can be detected using this method with â¼20 nm spatial resolution. Such ultrasensitive nanoscale strain imaging and analysis technique opens up opportunities for exploring unique local strain structures and strain-related physics in 2D materials. In addition, experimental evidence for local strain-induced phonon polariton reflection is also provided, which offers a new approach to manipulate light at deep subwavelength scales for nanophotonic devices.