Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Cancer Sci ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39245467

RESUMO

Chromosome aberrations (CAs), a genotoxic potential of carcinogens, are believed to contribute to tumorigenesis by chromosomal rearrangements through micronucleus formation. However, there is no direct evidence that proves the involvement of CAs in tumorigenesis in vivo. In the current study, we sought to clarify the involvement of CAs in chemical carcinogenesis using a rat model with a pure CA-inducer hepatocarcinogen, acetamide. Whole-genome analysis indicated that hepatic tumors induced by acetamide treatment for 26-30 weeks showed a broad range of copy number alterations in various chromosomes. In contrast, hepatic tumors induced by a typical mutagen (diethylnitrosamine) followed by a nonmutagen (phenobarbital) did not show such mutational patterns. Additionally, structural alterations such as translocations were observed more frequently in the acetamide-induced tumors. Moreover, most of the acetamide-induced tumors expressed c-Myc and/or MDM2 protein due to the copy number gain of each oncogene. These results suggest the occurrence of chromosomal rearrangements and subsequent oncogene amplification in the acetamide-induced tumors. Taken together, the results indicate that CAs are directly involved in tumorigenesis through chromosomal rearrangements in an acetamide-induced hepatocarcinogenesis rat model.

2.
Environ Toxicol ; 39(5): 3040-3054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314887

RESUMO

Studies on the effects of glyphosate (GlyP) and glyphosate-based herbicides (GBHs) on cerebellar development are extremely limited. This study examined the effects of maternal exposure to GlyP and GBH on rat cerebellar development in male offspring. From day 6 of gestation until day 21 postpartum at weaning, dams were given GlyP at 1.5% or 3.0% in diet or GBH at 1.0% in drinking water (corresponding to 0.36% GlyP). At weaning, GBH exposure was linked to increased numbers of DCX+ migrating granule cells in the cortex and TUNEL+ apoptotic cells in the internal granular layer (IGL), suggesting the disappearance of mismigrated granule cells via apoptosis. GBH also upregulated Nr4a3 and downregulated Cdk5 in the cerebellar vermis, suggesting a causal relation with the impaired granule cell development at this time. GlyP (3.0%) tended to increase in the number of DCX+ migrating granule cells in the IGL and upregulated Nr4a3 at weaning. Both compounds also upregulated genes related to granule cell migration (Astn1, Astn2, Nfia, and/or Nfix) at weaning and in adulthood, which might be an ameliorative response to delayed granule cell migration. Moreover, GBH induced Purkinje cell misalignment at weaning, which could be the result of delayed granule cell migration. In adulthood, GBH was associated with upregulation of the reelin signaling-related genes Reln, Dab1, and Efnb1, suggesting a compensatory response to Purkinje cell misalignment. GlyP induced the same gene expression changes. These results suggest that GBH reversibly disrupts cerebellar development, primarily by targeting granule cell migration and differentiation, whereas GlyP exhibited similar toxic potential as GBH.


Assuntos
Glifosato , Herbicidas , Humanos , Feminino , Ratos , Masculino , Animais , Herbicidas/toxicidade , Exposição Materna/efeitos adversos , Glicina/toxicidade , Diferenciação Celular
3.
Environ Toxicol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248596

RESUMO

The environmental contaminant perchlorate raises concern for hypothyroidism-related brain disorders in children. This study investigated the effects of developmental perchlorate exposure on hippocampal neurogenesis and oligodendrocyte (OL) development. Pregnant Sprague-Dawley rats were administered with ammonium perchlorate (AP) in drinking water at concentrations of 0 (control), 300, and 1000 ppm from gestation day 6 until weaning [postnatal day (PND) 21]. On PND 21, offspring displayed decreased serum triiodothyronine and thyroxine concentrations at 1000 ppm and thyroid follicular epithelial cell hyperplasia at ≥300 ppm (accompanying increased proliferation activity at 1000 ppm). Hippocampal neurogenesis indicated suppressed proliferation of neurogenic cells at ≥300 ppm, causing decreases in type-1 neural stem cells (NSCs) and type-2a neural progenitor cells. In addition, an increase of SST+ GABAergic interneurons and decreasing trend for ARC+ granule cells were observed at 1000 ppm. CNPase+ mature OLs were decreased in number in the dentate gyrus hilus at ≥300 ppm. At PND 77, thyroid changes had disappeared; however, the decrease of type-1 NSCs and increase of SST+ interneurons persisted, CCK+ interneurons were increased, and white matter tissue area was decreased at 1000 ppm. Obtained results suggest an induction of hypothyroidism causing suppressed hippocampal neurogenesis (targeting early neurogenic processes and decreased synaptic plasticity of granule cells involving ameliorative interneuron responses) and suppressed OL maturation during the weaning period. In adulthood, suppression of neurogenesis continued, and white matter hypoplasia was evident. Observed brain changes were similar to those caused by developmental hypothyroidism, suggesting that AP-induced developmental neurotoxicity was due to hypothyroidism.

4.
J Appl Toxicol ; 43(10): 1533-1548, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37162024

RESUMO

Ochratoxin A (OTA) is a mycotoxin that causes renal carcinogenicity following the induction of karyomegaly in proximal tubular cells after repeated administration to rats. Here, we performed gene profiling regarding altered DNA methylation and gene expression in the renal tubules focusing on the mechanism of OTA-induced carcinogenesis. For this purpose, OTA or 3-chloro-1,2-propanediol (3-MCPD), a renal carcinogen not inducing karyomegaly, was administered to rats for 13 weeks, and DNA methylation array and RNA sequencing analyses were performed on proximal tubular cells. Genes for which OTA altered the methylation status and gene expression level, after excluding genes showing similar expression changes by 3-MCPD, were subjected to confirmation analysis of the transcript level by real-time reverse-transcription PCR. Gene Ontology (GO)-based functional annotation analysis of validated genes revealed a cluster of hypermethylated and downregulated genes enriched under the GO term "mitochondrion," such as those associated with metabolic reprogramming in carcinogenic process (Clpx, Mrpl54, Mrps34, and Slc25a23). GO terms enriched for hypomethylated and upregulated genes included "response to arsenic-containing substance," represented by Cdkn1a involved in cell cycle arrest, and "positive regulation of IL-17 production," represented by Osm potentiating cell proliferation promotion. Other genes that did not cluster under any GO term included Lrrc14 involved in NF-κB-mediated inflammation, Gen1 linked to DNA repair, Has1 related to chromosomal aberration, and Anxa3 involved in tumor development and progression. In conclusion, a variety of genes engaged in carcinogenic processes were obtained by epigenetic gene profiling in rat renal tubular cells specific to OTA treatment for 13 weeks.


Assuntos
Ocratoxinas , alfa-Cloridrina , Ratos , Animais , Metilação de DNA , alfa-Cloridrina/metabolismo , alfa-Cloridrina/farmacologia , Rim , Ocratoxinas/toxicidade , Ocratoxinas/metabolismo , Expressão Gênica , Carcinógenos/toxicidade
5.
Environ Toxicol ; 38(1): 49-69, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36125228

RESUMO

We investigated the effect of lipopolysaccharide (LPS)-induced maternal immune activation used as a model for producing neurodevelopmental disorders on hippocampal neurogenesis and behaviors in rat offspring by exploring the antioxidant effects of alpha-glycosyl isoquercitrin (AGIQ). Pregnant Sprague-Dawley rats were intraperitoneally injected with LPS (50 µg/kg body weight) at gestational days 15 and 16. AGIQ was administered in the diet to dams at 0.5% (w/w) from gestational day 10 until weaning at postnatal day 21 and then to offspring until adulthood at postnatal day 77. During postnatal life, offspring of LPS-injected animals did not show neuroinflammation or oxidative stress in the brain. At weaning, LPS decreased the numbers of type-2b neural progenitor cells (NPCs) and PCNA+ proliferating cells in the subgranular zone, FOS-expressing granule cells, and GAD67+ hilar interneurons in the dentate gyrus. In adulthood, LPS decreased type-1 neural stem cells, type-2a NPCs, and GAD67+ hilar interneurons, and downregulated Dpysl3, Sst, Fos, Mapk1, Mapk3, Grin2a, Grin2b, Bdnf, and Ntrk2. In adults, LPS suppressed locomotor activity in the open field test and suppressed fear memory acquisition and fear extinction learning in the contextual fear conditioning test. These results indicate that mid-gestation LPS injections disrupt programming of normal neurodevelopment resulting in progressive suppression of hippocampal neurogenesis and synaptic plasticity of newborn granule cells by suppressing GABAergic and glutamatergic neurotransmitter signals and BDNF/TrkB signaling to result in adult-stage behavioral deficits. AGIQ ameliorated most aberrations in hippocampal neurogenesis and synaptic plasticity, as well as behavioral deficits. Effective amelioration by continuous AGIQ treatment starting before LPS injections may reflect both anti-inflammatory and anti-oxidative stress effects during gestation and neuroprotective effects of continuous exposure through adulthood.


Assuntos
Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Quercetina , Animais , Feminino , Gravidez , Ratos , Fator Neurotrófico Derivado do Encéfalo , Extinção Psicológica , Medo , Hipocampo , Lipopolissacarídeos/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos Sprague-Dawley , Quercetina/análogos & derivados , Quercetina/farmacologia , Neuroproteção , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/prevenção & controle
6.
Dig Dis Sci ; 67(10): 4770-4779, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35088188

RESUMO

BACKGROUND: We previously reported that clumps of a few epithelial cells were scattered in ulcer regions in a dextran sulfate sodium (DSS)-induced mouse model of ulcerative colitis (UC). AIMS: To determine the ectopically localized epithelial clumps might be derived from stem cells or their daughter progenitor cells. METHODS: Female BALB/c mice were administered DSS in drinking water for 6 days, followed by withdrawal of DSS for 6 days. Histological and immunohistochemical examinations were conducted in the distal region and proximal region of the colorectum to determine expression of stem cell markers in the epithelial clumps. RESULTS: Similar to the characteristics of UC, the ulcers were more severe in the distal region close to the anus than in the proximal region of the colorectum. Quantitative analyses revealed that the epithelial clumps appeared in relation to the severity of the ulcer, and they expressed the cell adhesion molecules E-cadherin and ß-catenin. Among stem cell markers, the epithelial clumps primarily expressed +5 cell marker Dll1 as reserved intestinal stem cells, followed by +4 cell marker Bmi1 and crypt stem cell marker Lgr5 in that order. Nuclear expression of Sox9, but not nuclear ß-catenin, was identified in the clumps. CONCLUSION: The present results suggest that most epithelial clumps comprised crypt-derived, reserved stem cells, which might have potential for mucosal healing.


Assuntos
Colite Ulcerativa , Colite , Água Potável , Animais , Caderinas/metabolismo , Colite/induzido quimicamente , Colite Ulcerativa/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Água Potável/efeitos adversos , Água Potável/metabolismo , Células Epiteliais/metabolismo , Feminino , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células-Tronco/patologia , Úlcera/induzido quimicamente , Úlcera/patologia , beta Catenina/metabolismo
7.
J Appl Toxicol ; 42(5): 864-882, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34779009

RESUMO

We have previously reported that the valproic acid (VPA)-induced disruption pattern of hippocampal adult neurogenesis differs between developmental and 28-day postpubertal exposure. In the present study, we performed brain region-specific global gene expression profiling to compare the profiles of VPA-induced neurotoxicity between developmental and postpubertal exposure. Offspring exposed to VPA at 0, 667, and 2000 parts per million (ppm) via maternal drinking water from gestational day 6 until weaning (postnatal day 21) were examined, along with male rats orally administered VPA at 0, 200, and 900 mg/kg body weight for 28 days starting at 5 weeks old. Four brain regions-the hippocampal dentate gyrus, corpus callosum, cerebral cortex, and cerebellar vermis-were subjected to expression microarray analysis. Profiled data suggested a region-specific pattern of effects after developmental VPA exposure, and a common pattern of effects among brain regions after postpubertal VPA exposure. Developmental VPA exposure typically led to the altered expression of genes related to nervous system development (Msx1, Xcl1, Foxj1, Prdm16, C3, and Kif11) in the hippocampus, and those related to nervous system development (Neurod1) and gliogenesis (Notch1 and Sox9) in the corpus callosum. Postpubertal VPA exposure led to the altered expression of genes related to neuronal differentiation and projection (Cd47, Cyr61, Dbi, Adamts1, and Btg2) in multiple brain regions. These findings suggested that neurotoxic patterns of VPA might be different between developmental and postpubertal exposure, which was consistent with our previous study. Of note, the hippocampal dentate gyrus might be a sensitive target of developmental neurotoxicants after puberty.


Assuntos
Síndromes Neurotóxicas , Efeitos Tardios da Exposição Pré-Natal , Animais , Encéfalo , Hipocampo , Masculino , Neurogênese , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Maturidade Sexual , Transcriptoma , Ácido Valproico/metabolismo , Ácido Valproico/toxicidade
8.
J Appl Toxicol ; 42(8): 1337-1353, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35146777

RESUMO

Aluminum (Al), a common light metal, affects the developing nervous system. Developmental exposure to Al chloride (AlCl3 ) induces aberrant neurogenesis by targeting neural stem cells (NSCs) and/or neural progenitor cells (NPCs) in the dentate gyrus (DG) of rats and mice. To investigate whether hippocampal neurogenesis is similarly affected by AlCl3 exposure in a general toxicity study, AlCl3 was orally administered to 5-week-old Sprague Dawley rats at dosages of 0, 4000, or 8000 ppm in drinking water for 28 days. AlCl3 downregulated Sox2 transcript level in the DG at the highest dosage and produced a dose-dependent decrease of SOX2+ cells without altering numbers of GFAP+ or TBR2+ cells in the subgranular zone, suggesting that AlCl3 decreases Type 2a NPCs. High-dose exposure downregulated Pcna, upregulated Pvalb, and altered expression of genes suggestive of oxidative stress induction (upregulation of Nos2 and downregulation of antioxidant enzyme genes), indicating suppressed proliferation and differentiation of Type 1 NSCs. AlCl3 doses also increased mature granule cells in the DG. Upregulation of Reln may have contributed to an increase of granule cells to compensate for the decrease of Type 2a NPCs. Moreover, upregulation of Calb2, Gria2, Mapk3, and Tgfb3, as well as increased numbers of activated astrocytes in the DG hilus, may represent ameliorating responses against suppressed neurogenesis. These results suggest that 28-day exposure of young-adult rats to AlCl3 differentially targeted NPCs and mature granule cells in hippocampal neurogenesis, yielding a different pattern of disrupted neurogenesis from developmental exposure.


Assuntos
Células-Tronco Neurais , Neurogênese , Cloreto de Alumínio/toxicidade , Animais , Proliferação de Células , Giro Denteado/metabolismo , Hipocampo , Camundongos , Células-Tronco Neurais/metabolismo , Ratos , Ratos Sprague-Dawley
9.
J Toxicol Pathol ; 35(3): 225-235, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35832897

RESUMO

The development of in vitro toxicity assessment methods using cultured cells has gained popularity for promoting animal welfare in animal experiments. Herein, we briefly discuss the current status of hepatoxicity assessment using human- and rat-derived hepatocytes; we focus on the liver organoid method, which has been extensively studied in recent years, and discuss how toxicologic pathologists can use their knowledge and experience to contribute to the development of in vitro chemical hepatotoxicity assessment methods for drugs, pesticides, and chemicals. We also propose how toxicological pathologists should assess toxicity regarding the putative distribution of undifferentiated and differentiated cells in the organoid when liver organoids are observed in hematoxylin and eosin-stained specimens. This was done while considering the usefulness and limitations of in vitro studies for toxicologic pathology assessment.

10.
Arch Toxicol ; 95(8): 2851-2865, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160648

RESUMO

Chromosome aberrations (CAs), i.e. changes in chromosome number or structure, are known to cause chromosome rearrangements and subsequently tumorigenesis. However, the involvement of CAs in chemical-induced carcinogenesis is unclear. In the current study, we aimed to clarify the possible involvement of CAs in chemical carcinogenesis using a rat model with the non-mutagenic hepatocarcinogen acetamide. In an in vivo micronucleus (MN) test, acetamide was revealed to induce CAs specifically in rat liver at carcinogenic doses. Acetamide also induced centromere-positive large MN (LMN) in hepatocytes. Immunohistochemical and electron microscopic analyses of the LMN, which can be histopathologically detected as basophilic cytoplasmic inclusion, revealed abnormal expression of nuclear envelope proteins, increased heterochromatinization, and massive DNA damage. These molecular pathological features in LMN progressed with acetamide exposure in a time-dependent manner, implying that LMN formation can lead to chromosome rearrangements. Overall, these data suggested that CAs induced by acetamide play a pivotal role in acetamide-induced hepatocarcinogenesis in rats and that CAs can cause chemical carcinogenesis in animals via MN formation.


Assuntos
Acetamidas/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Hepatócitos/efeitos dos fármacos , Neoplasias Hepáticas/induzido quimicamente , Acetamidas/administração & dosagem , Animais , Carcinogênese/induzido quimicamente , Carcinógenos/administração & dosagem , Carcinógenos/toxicidade , Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Masculino , Testes para Micronúcleos , Ratos , Ratos Endogâmicos F344 , Fatores de Tempo
11.
J Appl Toxicol ; 41(7): 1021-1037, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33150595

RESUMO

We have previously found that maternal exposure to 6-propyl-2-thiouracil (PTU), valproic acid (VPA), or glycidol (GLY) has a sustained or late effect on hippocampal neurogenesis at the adult stage in rat offspring. Herein, we searched for genes with hypermethylated promoter region and downregulated transcript level to reveal irreversible markers of developmental neurotoxicity. The hippocampal dentate gyrus of male rat offspring exposed maternally to PTU, VPA, or GLY was subjected to Methyl-Seq and RNA-Seq analyses on postnatal day (PND) 21. Among the genes identified, 170 were selected for further validation analysis of gene expression on PND 21 and PND 77 by real-time reverse transcription-PCR. PTU and GLY downregulated many genes on PND 21, reflecting diverse effects on neurogenesis. Furthermore, genes showing sustained downregulation were found after PTU or VPA exposure, reflecting a sustained or late effect on neurogenesis by these compounds. In contrast, such genes were not observed with GLY, probably because of the reversible nature of the effects. Among the genes showing sustained downregulation, Creb, Arc, and Hes5 were concurrently downregulated by PTU, suggesting an association with neuronal mismigration, suppressed synaptic plasticity, and reduction in neural stem and progenitor cells. Epha7 and Pvalb were also concurrently downregulated by PTU, suggesting an association with the reduction in late-stage progenitor cells. VPA induced sustained downregulation of Vgf and Dpysl4, which may be related to the aberrations in synaptic plasticity. The genes showing sustained downregulation may be irreversible markers of developmental neurotoxicity.


Assuntos
Metilação de DNA , Hipocampo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Síndromes Neurotóxicas/genética , Animais , DNA , Metilação de DNA/genética , Giro Denteado/efeitos dos fármacos , Compostos de Epóxi , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Exposição Materna , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Propanóis , Propiltiouracila/farmacologia , Ratos
12.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34639103

RESUMO

Various pathogens, such as Ebola virus, Marburg virus, Nipah virus, Hendra virus, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, are threatening human health worldwide. The natural hosts of these pathogens are thought to be bats. The rousette bat, a megabat, is thought to be a natural reservoir of filoviruses, including Ebola and Marburg viruses. Additionally, the rousette bat showed a transient infection in the experimental inoculation of SARS-CoV-2. In the current study, we established and characterized intestinal organoids from Leschenault's rousette, Rousettus leschenaultii. The established organoids successfully recapitulated the characteristics of intestinal epithelial structure and morphology, and the appropriate supplements necessary for long-term stable culture were identified. The organoid showed susceptibility to Pteropine orthoreovirus (PRV) but not to SARS-CoV-2 in experimental inoculation. This is the first report of the establishment of an expandable organoid culture system of the rousette bat intestinal organoid and its sensitivity to bat-associated viruses, PRV and SARS-CoV-2. This organoid is a useful tool for the elucidation of tolerance mechanisms of the emerging rousette bat-associated viruses such as Ebola and Marburg virus.


Assuntos
COVID-19/virologia , Quirópteros/virologia , Organoides/virologia , Orthoreovirus/fisiologia , Infecções por Reoviridae/virologia , SARS-CoV-2/fisiologia , Animais , COVID-19/veterinária , Técnicas de Cultura de Células , Células Cultivadas , Quirópteros/fisiologia , Humanos , Intestinos/citologia , Intestinos/virologia , Organoides/citologia , Infecções por Reoviridae/veterinária
13.
Toxicol Pathol ; 48(7): 827-844, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912053

RESUMO

Harmonization of diagnostic terminology used during the histopathologic analysis of rodent tissue sections from nonclinical toxicity studies will improve the consistency of data sets produced by laboratories located around the world. The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a cooperative enterprise of 4 major societies of toxicologic pathology to develop a globally accepted standard vocabulary for proliferative and nonproliferative lesions in rodents. A prior manuscript (Toxicol Pathol 2012;40[4 Suppl]:87S-157S) defined multiple diagnostic terms for toxicant-induced lesions, common spontaneous and age-related changes, and principal confounding artifacts in the rat and mouse central nervous system (CNS) and peripheral nervous system (PNS). The current article defines 9 new diagnostic terms and updates 2 previous terms for findings in the rodent CNS and PNS, the need for which has become evident in the years since the publication of the initial INHAND nomenclature for findings in rodent neural tissues. The nomenclature presented in this document is also available electronically on the Internet at the goRENI website (http://www.goreni.org/).


Assuntos
Sistema Nervoso Periférico , Animais , Camundongos , Ratos
14.
J Appl Toxicol ; 40(11): 1467-1479, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32596862

RESUMO

We previously found downregulation of low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4), a negative regulator of transforming growth factor (TGF)-ß signaling, in glutathione S-transferase placental form (GST-P) expressing (+ ) pre-neoplastic lesions produced by treatment with nongenotoxic hepatocarcinogens for up to 90 days in rats. Here, we investigated the relationship between LDLRAD4 downregulation and TGFß signaling in nongenotoxic hepatocarcinogenesis. The transcripts of Tgfb and Hb-egf increased after ≥28 days of treatment. After 84 or 90 days, Snai1 increased transcripts and the subpopulation of GST-P+ foci downregulating LDLRAD4 co-expressed TGFß1, phosphorylated EGFR, or phosphorylated AKT2, and downregulated PTEN, showing higher incidences than those in GST-P+ foci expressing LDLRAD4. The subpopulation of GST-P+ foci downregulating LDLRAD4 also co-expressed caveolin-1 or TACE/ADAM17, suggesting that disruptive activation of TGFß signaling through a loss of LDLRAD4 enhances EGFR and PTEN/AKT-dependent pathways via caveolin-1-dependent activation of TACE/ADAM17 during nongenotoxic hepatocarcinogenesis. The numbers of c-MYC+ cells and PCNA+ cells were higher in LDLRAD4-downregulated GST-P+ foci than in LDLRAD4-expressing GST-P+ foci, suggesting a preferential proliferation of pre-neoplastic cells by LDLRAD4 downregulation. Nongenotoxic hepatocarcinogens markedly downregulated Nox4 after 28 days and later decreased cleaved caspase 3+ cells in LDLRAD4-downregulated GST-P+ foci, suggesting an attenuation of apoptosis by LDLRAD4 downregulation through activation of the EGFR pathway. At the late hepatocarcinogenesis stage in a two-stage model, LDLRAD4 downregulation was higher in adenoma and carcinoma than in pre-neoplastic cell foci, suggesting a role of LDLRAD4 downregulation in tumor development. Our results suggest that nongenotoxic hepatocarcinogens cause disruptive activation of TGFß signaling through downregulating LDLRAD4 toward carcinogenesis in the rat liver.


Assuntos
Apoptose , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Lesões Pré-Cancerosas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Tetracloreto de Carbono , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dietilnitrosamina , Modelos Animais de Doenças , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Metapirileno , Lesões Pré-Cancerosas/induzido quimicamente , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Ratos Endogâmicos F344 , Transdução de Sinais , Tioacetamida , Fatores de Tempo , Fator de Crescimento Transformador beta/genética
15.
J Toxicol Pathol ; 33(4): 247-263, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33239843

RESUMO

We previously reported that exposure to α-glycosyl isoquercitrin (AGIQ) from the fetal stage to adulthood facilitated fear extinction learning in rats. The present study investigated the specific AGIQ exposure period sufficient for inducing this behavioral effect. Rats were dietarily exposed to 0.5% AGIQ from the postweaning stage to adulthood (PW-AGIQ), the fetal stage to postweaning stage (DEV-AGIQ), or the fetal stage to adulthood (WP-AGIQ). Fear memory, anxiety-like behavior, and object recognition memory were assessed during adulthood. Fear extinction learning was exclusively facilitated in the WP-AGIQ rats. Synaptic plasticity-related genes showed a similar pattern of constitutive expression changes in the hippocampal dentate gyrus and prelimbic medial prefrontal cortex (mPFC) between the DEV-AGIQ and WP-AGIQ rats. However, WP-AGIQ rats revealed more genes constitutively upregulated in the infralimbic mPFC and amygdala than DEV-AGIQ rats, as well as FOS-immunoreactive(+) neurons constitutively increased in the infralimbic cortex. Ninety minutes after the last fear extinction trial, many synaptic plasticity-related genes (encoding Ephs/Ephrins, glutamate receptors/transporters, and immediate-early gene proteins and their regulator, extracellular signal-regulated kinase 2 [ERK2]) were upregulated in the dentate gyrus and amygdala in WP-AGIQ rats. Additionally, WP-AGIQ rats exhibited increased phosphorylated ERK1/2+ neurons in both the prelimbic and infralimbic cortices. These results suggest that AGIQ exposure from the fetal stage to adulthood is necessary for facilitating fear extinction learning. Furthermore, constitutive and learning-dependent upregulation of synaptic plasticity-related genes/molecules may be differentially involved in brain regions that regulate fear memory. Thus, new learning-related neural circuits for facilitating fear extinction can be established in the mPFC.

16.
Cancer Sci ; 110(9): 2806-2821, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31254429

RESUMO

In human and dogs, bladder cancer (BC) is the most common neoplasm affecting the urinary tract. Dog BC resembles human muscle-invasive BC in histopathological characteristics and gene expression profiles, and could be an important research model for this disease. Cancer patient-derived organoid culture can recapitulate organ structures and maintains the gene expression profiles of original tumor tissues. In a previous study, we generated dog prostate cancer organoids using urine samples, however dog BC organoids had never been produced. Therefore we aimed to generate dog BC organoids using urine samples and check their histopathological characteristics, drug sensitivity, and gene expression profiles. Organoids from individual BC dogs were successfully generated, expressed urothelial cell markers (CK7, CK20, and UPK3A) and exhibited tumorigenesis in vivo. In a cell viability assay, the response to combined treatment with a range of anticancer drugs (cisplatin, vinblastine, gemcitabine or piroxicam) was markedly different in each BC organoid. In RNA-sequencing analysis, expression levels of basal cell markers (CK5 and DSG3) and several novel genes (MMP28, CTSE, CNN3, TFPI2, COL17A1, and AGPAT4) were upregulated in BC organoids compared with normal bladder tissues or two-dimensional (2D) BC cell lines. These established dog BC organoids might be a useful tool, not only to determine suitable chemotherapy for BC diseased dogs but also to identify novel biomarkers in human muscle-invasive BC. In the present study, for the 1st time, dog BC organoids were generated and several specifically upregulated organoid genes were identified. Our data suggest that dog BC organoids might become a new tool to provide fresh insights into both dog BC therapy and diagnostic biomarkers.


Assuntos
Técnicas de Cultura de Células/métodos , Doenças do Cão/patologia , Organoides/patologia , Neoplasias da Bexiga Urinária/veterinária , Bexiga Urinária/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doenças do Cão/tratamento farmacológico , Doenças do Cão/genética , Doenças do Cão/urina , Cães , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Masculino , Organoides/efeitos dos fármacos , Organoides/metabolismo , Análise de Sequência de RNA , Regulação para Cima , Bexiga Urinária/citologia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/urina , Urina/citologia , Urotélio/citologia
17.
J Toxicol Pathol ; 32(4): 261-274, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31719753

RESUMO

To clarify difference in the responses on the reprogramming of metabolism toward carcinogenesis between genotoxic and non-genotoxic hepatocarcinogens in the liver, rats were repeatedly administered genotoxic hepatocarcinogens (N-nitrosodiethylamine, aflatoxin B1, N-nitrosopyrrolidine, or carbadox) or non-genotoxic hepatocarcinogens (carbon tetrachloride, thioacetamide, or methapyrilene hydrochloride) for 28, 84, or 90 days. Non-genotoxic hepatocarcinogens revealed transcript expression changes suggestive of suppressed mitochondrial oxidative phosphorylation (OXPHOS) after 28 days and increased glutathione S-transferase placental form-positive (GST-P+) foci downregulating adenosine triphosphate (ATP) synthase subunit beta, mitochondrial precursor (ATPB), compared with genotoxic hepatocarcinogens after 84 or 90 days, suggesting that non-genotoxic hepatocarcinogens are prone to suppress OXPHOS from the early stage of treatment, which is in contrast to genotoxic hepatocarcinogens. Both genotoxic and non-genotoxic hepatocarcinogens upregulated glycolytic enzyme genes and increased cellular membrane solute carrier family 2, facilitated glucose transporter member 1 (GLUT1) expression in GST-P+ foci for up to 90 days, suggesting induction of a metabolic shift from OXPHOS to glycolysis at early hepatocarcinogenesis by hepatocarcinogens unrelated to genotoxic potential. Non-genotoxic hepatocarcinogens increased c-MYC+ cells after 28 days and downregulated Tp53 after 84 or 90 days, suggesting a commitment to enhanced metabolic shift and cell proliferation. Genotoxic hepatocarcinogens also enhanced c-MYC activation-related metabolic shift until 84 or 90 days. In addition, both genotoxic and non-genotoxic hepatocarcinogens upregulated glutaminolysis-related Slc1a5 or Gls, or both, after 28 days and induced liver cell foci immunoreactive for neutral amino acid transporter B(0) (SLC1A5) in the subpopulation of GST-P+ foci after 84 or 90 days, suggesting glutaminolysis-mediated facilitation of cell proliferation toward hepatocarcinogenesis. These results suggest differential responses between genotoxic and non-genotoxic hepatocarcinogens on reprogramming of energy metabolic pathways toward carcinogenesis in liver cells from the early stage of hepatocarcinogen treatment.

18.
J Toxicol Pathol ; 32(3): 165-180, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31404398

RESUMO

Hypothyroidism during the developmental stage induces disruption of hippocampal neurogenesis in later life, as well as inducing oxidative stress in the brain. The present study investigated the preventive effect of co-exposure to an antioxidant on disruptive neurogenesis induced by developmental exposure to anti-thyroid agent in rats. For this purpose, we used two antioxidants, α-glycosyl isoquercitrin (AGIQ) and α-lipoic acid (ALA). Mated female Sprague Dawley rats were either untreated (control) or treated with 12 ppm 6-propyl-2-thiouracil (PTU), an anti-thyroid agent, in drinking water from gestational day 6 to postnatal day (PND) 21, the latter group being subjected to feeding basal diet alone or diet containing AGIQ at 5,000 ppm or ALA at 2,000 ppm during PTU exposure. On PND 21, PTU-exposed offspring showed reductions in a broad range of granule cell lineage subpopulations and a change in the number of GABAergic interneuron subpopulations. Co-exposure of AGIQ or ALA with PTU altered the transcript levels of many genes across multiple functions, suggestive of enhancement of synaptic plasticity and neurogenesis. Nevertheless, immunohistochemical results did not support these changes. PTU exposure and co-exposure of AGIQ or ALA with PTU did not alter the hippocampal lipid peroxidation level. The obtained results suggest a possibility that thyroid hormone depletion itself primarily disrupts neurogenesis and that oxidative stress may not be involved in the disruption during development. Transcript expression changes of many genes caused by antioxidants may be the result of neuroprotective actions of antioxidants rather than their antioxidant activity. However, no preventive effect on neurogenesis suggested impairment of protein synthesis via an effect on mRNA translation due to hypothyroidism.

19.
Cancer Sci ; 109(5): 1638-1647, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29520973

RESUMO

Fluorescence tumor imaging using exogenous fluorescent tumor-targeting agents has potential to improve early tumor detection. The fluorescent contrast agent indocyanine green (ICG) is used in medical diagnostics. The aim of the present study is to investigate the tumor imaging capability and the imaging mechanism of i.v. administered ICG in a mouse model of colitis-associated colon cancer. To do this, an azoxymethane/dextran sodium sulfate-induced colon cancer mouse model was used. Ex vivo imaging experiments were carried out 1 hour after i.v. injection of ICG. The ICG fluorescence was observed in the colon tumor tissues, with sufficient tumor to normal tissue ratio, correlating with tumor malignancy. In the tumor tissues, ICG fluorescence was localized in the vascular interstitial tissue. Immunofluorescence microscopy revealed that tumor cells formed tight junctions normally, suggesting an inability of tumor cellular uptake of ICG. In contrast, tumor tissues increased the CD31-immunoreactive endothelial cell area, and accumulated stromal cells immunoreactive for COX-2 and tumor cell population immunoreactive for inducible nitric oxide synthase. In vivo vascular permeability assay revealed that prostaglandin E2 promoted the endothelial cell permeability of ICG. In conclusion, our data indicated that fluorescence contrast-enhanced imaging following i.v. administered ICG can be applied to the detection of colon tumors in a mouse colitis-associated colon cancer model. The tumor tissue preference of ICG in the present model can be attributed to the enhanced vascular leakage of ICG involving inflammatory mediators, such as COX-2 and inducible nitric oxide synthase, in conjunction with increased tumor vascularity.


Assuntos
Colite/complicações , Neoplasias do Colo/diagnóstico por imagem , Verde de Indocianina/administração & dosagem , Animais , Permeabilidade Capilar , Neoplasias do Colo/irrigação sanguínea , Modelos Animais de Doenças , Feminino , Fluorescência , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos ICR , Junções Íntimas
20.
J Autoimmun ; 86: 75-92, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931462

RESUMO

Autoimmunity is prevented by the function of the autoimmune regulator [AIRE (Aire in mice)], which promotes the expression of a wide variety of tissue-restricted antigens (TRAs) from medullary thymic epithelial cells (mTECs) and from a subset of peripheral antigen-presenting cells (APCs). We examined the effect of additive expression of human AIRE (huAIRE) in a model of autoimmune diabetes in NOD mice. Unexpectedly, we observed that mice expressing augmented AIRE/Aire developed muscle-specific autoimmunity associated with incomplete maturation of mTECs together with impaired expression of Aire-dependent TRAs. This led to failure of deletion of autoreactive T cells together with dramatically reduced production of regulatory T cells in the thymus. In peripheral APCs, expression of costimulatory molecules was augmented. We suggest that levels of Aire expression need to be tightly controlled for maintenance of immunological tolerance. Our results also highlight the importance of coordinated action between central tolerance and peripheral tolerance under the common control of Aire.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Músculos/imunologia , Polimiosite/imunologia , Timo/imunologia , Fatores de Transcrição/metabolismo , Animais , Autoantígenos/metabolismo , Autoimunidade , Modelos Animais de Doenças , Humanos , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Especificidade de Órgãos , Fatores de Transcrição/genética , Proteína AIRE
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA