Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neural Plast ; 2021: 8813734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510779

RESUMO

The cholinergic system plays a fundamental role in learning and memory. Pharmacological activation of the muscarinic receptor M1R potentiates NMDA receptor activity and induces short-term potentiation at the synapses called muscarinic LTP, mLTP. Dysfunction of cholinergic transmission has been detected in the settings of cognitive impairment and dementia. Systemic inflammation as well as neuroinflammation has been shown to profoundly alter synaptic transmission and LTP. Indeed, intervention which is aimed at reducing neuroinflammatory changes in the brain has been associated with an improvement in cognitive functions. While cognitive impairment caused either by cholinergic dysfunction and/or by systemic inflammation suggests a possible connection between the two, so far whether systemic inflammation affects mLTP has not been extensively studied. In the present work, we explored whether an acute versus persistent systemic inflammation induced by LPS injections would differently affect the ability of hippocampal synapses to undergo mLTP. Interestingly, while a short exposure to LPS resulted in a transient deficit in mLTP expression, a longer exposure persistently impaired mLTP. We believe that these findings may be involved in cognitive dysfunctions following sepsis and possibly neuroinflammatory processes.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Receptor Muscarínico M1/fisiologia , Animais , Agonistas Colinérgicos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/fisiopatologia , Lipopolissacarídeos/toxicidade , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Receptor Muscarínico M1/agonistas
2.
Vaccines (Basel) ; 10(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35891282

RESUMO

Some of the most significant medical achievements in recent history are the development of distinct and effective vaccines, and the improvement of the efficacy of previously existing ones, which have contributed to the eradication of many dangerous and life-threatening diseases. Immunization depends on the generation of a physiological memory response and protection against infection. It is therefore crucial that antigens are delivered in an efficient manner, to elicit a robust immune response. The recent approval of COVID-19 vaccines containing lipid nanoparticles encapsulating mRNA demonstrates the broad potential of lipid-based delivery systems. In light of this, the present review article summarizes currently synthesized lipid-based nanoparticles such as liposomes, lipid-nano particles, or cell-derived exosomes.

3.
J Pers Med ; 11(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34575716

RESUMO

The CD24 gene has raised considerable interest in tumor biology as a new prognostic factor and a biomarker for the early detection of cancer. There are currently no studies that assess predictors of CD24 in blood tests among healthy individuals. Our aims were (1) to evaluate predictors of the CD24/CD11b biomarker among healthy subjects and (2) to assess CD24/CD11b levels of participants with and without benign tumors. Our cohort included 1640 healthy subjects, aged 20-85, recruited at the Health Promotion and Integrated Cancer Prevention Center (ICPC) in the Tel Aviv Medical Center. Eligible subjects completed a detailed questionnaire on medical history and other epidemiologic information. CD24/CD11b expression in peripheral blood leukocytes (PBLs) obtained from blood samples of participants was analyzed by flow cytometry. Our results showed that the average levels of CD24/CD11b in healthy patients (22.8 ± 9.3) was statistically significant lower compared to subjects with benign cancers (26.1 ± 10.5, p < 0.001). Our multivariable analysis demonstrated that elevated levels of CRP (coefficient ß: 1.98, p = 0.011) were significantly associated with high levels of CD24/CD11b expression among healthy participants. Other risk factors of cancer were not associated with elevated CD24 levels among healthy subjects. In conclusion, our findings may assist in further development and optimization of the CD24/CD11b biomarker to serve as a cancer screening test for early detection of cancer among the healthy population.

4.
J Mol Med (Berl) ; 97(11): 1567-1574, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31667526

RESUMO

Status epilepticus (SE) is a life-threatening condition characterized by ongoing seizure activity which can lead to severe brain damage and death if not treated properly. Recent work suggests that alterations in blood-brain barrier (BBB) function and subsequent cortical exposure to coagulation factors may initiate, promote, and/or sustain SE. This suggestion is based on the observation that the serine protease thrombin, which plays a fundamental role in the blood coagulation cascade, increases neural excitability through the activation of protease-activated receptor 1 (PAR1). However, it remains unclear whether systemic inhibition of thrombin asserts "anti-epileptic" effects in vivo. We here used the pilocarpine model of SE in adult 3-month-old male mice to address the question whether intraperitoneal injection of the thrombin inhibitor α-NAPAP (0.75 mg/kg) counters SE. Indeed, pharmacological inhibition of thrombin ameliorates the behavioral outcome of pilocarpine-induced SE. Similar results are obtained when the thrombin receptor PAR1 is pharmacologically blocked using intraperitoneal injection of SCH79797 (25 µg/kg) prior to SE induction. Consistent with these results, an increase in thrombin immunofluorescence is detected in the hippocampus of pilocarpine-treated animals. Moreover, increased hippocampal serine protease activity is detected 90 min after SE induction, which is not observed in animals treated with α-NAPAP prior to SE induction. Together, these results corroborate and extend recent studies suggesting that novel oral anticoagulants which target thrombin (and PAR1) may assert anti-epileptic effects in vivo. KEY MESSAGES: Systemic thrombin/PAR1-inhibition ameliorates anticoagulants behavioral seizures. Status epilepticus increases thrombin levels in the hippocampus. Increased serine protease activity in the hippocampus after status epileptic. Anti-epileptic potential of clinically used anticoagulants must be evaluated.


Assuntos
Pilocarpina/toxicidade , Receptor PAR-1/metabolismo , Estado Epiléptico/induzido quimicamente , Trombina/antagonistas & inibidores , Trombina/metabolismo , Animais , Anticoagulantes/uso terapêutico , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Pirróis/uso terapêutico , Quinazolinas/uso terapêutico
5.
Neuroscience ; 339: 587-598, 2016 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-27771530

RESUMO

Thrombin and activated protein C (aPC) bound to the endothelial protein C receptor (EPCR) both activate protease-activated receptor 1 (PAR1) generating either harmful or protective signaling respectively. In the present study we examined the localization of PAR-1 and EPCR and thrombin activity in Schwann glial cells of normal and crushed peripheral nerve and in Schwannoma cell lines. In the sciatic crush model nerves were excised 1h, 1, 4, and 7days after the injury. Schwannoma cell lines produced high levels of prothrombin which is converted to active thrombin and expressed both EPCR and PAR-1 which co-localized. In the injured sciatic nerve thrombin levels were elevated as early as 1h after injury, reached their peak 1day after injury which was significantly higher (24.4±4.1mU/ml) compared to contralateral uninjured nerves (2.6±7mU/ml, t-test p<0.001) and declined linearly reaching baseline levels by day 7. EPCR was found to be located at the microvilli of Schwann cells at the node of Ranvier and in cytoplasm surrounding the nucleus. Four days after sciatic injury, EPCR levels increased significantly (57,785±16602AU versus 4790±1294AU in the contralateral uninjured nerves, p<0.001 by t-test) mainly distal to the site of injury, where axon degeneration is followed by proliferation of Schwann cells which are diffusely stained for EPCR. EPCR seems to be located to cytoplasmic component of Schwann cells and not to compact myelin component, and is highly increased following injury.


Assuntos
Proteína C/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Trombina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Lateralidade Funcional , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/metabolismo , Protrombina/metabolismo , Ratos Sprague-Dawley , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Receptores de Endotelina/metabolismo , Nervo Isquiático/lesões , Transdução de Sinais , Trombomodulina/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA