Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Divers ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38010605

RESUMO

The emergence of multidrug-resistant tuberculosis (MDR-TB) strains has rendered many anti-TB drugs ineffective. Consequently, there is an urgent need to identify new drug targets against Mycobacterium tuberculosis (Mtb). Filament Forming Temperature Sensitive Gene Z (FtsZ), a member of the cytoskeletal protein family, plays a vital role in cell division by forming a cytokinetic ring at the cell's center and coordinating the division machinery. When FtsZ is depleted, cells are unable to divide and instead elongate into filamentous structures that eventually undergo lysis. Since the inactivation of FtsZ or alterations in its assembly impede the formation of the Z-ring and septum, FtsZ shows promise as a target for the development of anti-mycobacterial drugs. This review not only discusses the potential role of FtsZ as a promising pharmacological target for anti-tuberculosis therapies but also explores the structural and functional aspects of the mycobacterial protein FtsZ in cell division. Additionally, it reviews various inhibitors of Mtb FtsZ. By understanding the importance of FtsZ in cell division, researchers can explore strategies to disrupt its function, impeding the growth and proliferation of Mtb. Furthermore, the investigation of different inhibitors that target Mtb FtsZ expands the potential for developing effective treatments against tuberculosis.

2.
J Med Chem ; 65(2): 1008-1046, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34323489

RESUMO

The pyrimidine core-containing compound Osimertinib is the only epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) from the third generation that has been approved by the U.S. Food and Drug Administration to target threonine 790 methionine (T790M) resistance while sparing the wild-type epidermal growth factor receptor (WT EGFR). It is nearly 200-fold more selective toward the mutant EGFR as compared to the WT EGFR. A tertiary cystein 797 to serine 797 (C797S) mutation in the EGFR kinase domain has hampered Osimertinib treatment in patients with advanced EGFR-mutated non-small-cell lung cancer (NSCLC). This C797S mutation is presumed to induce a tertiary-acquired resistance to all current reversible and irreversible EGFR TKIs. This review summarizes the molecular mechanisms of resistance to Osimertinib as well as different strategies for overcoming the EGFR-dependent and EGFR-independent mechanisms of resistance, new challenges, and a future direction.


Assuntos
Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
3.
Eur J Med Chem ; 222: 113568, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34118719

RESUMO

TUBERCULOSIS: (TB) transmitted by Mycobacterium tuberculosis (Mtb) is one of the top 10 causes of death globally. Currently, the widespread occurrence of resistance toward Mtb strains is becoming a significant concern to public health. This scenario exaggerated the need for the discovery of novel targets and their inhibitors. Targeting the "Mtb cell wall peptidoglycan synthesis" is an attractive strategy to overcome drug resistance. Mur enzymes (MurA-MurF) play essential roles in the peptidoglycan synthesis by catalyzing the ligation of key amino acid residues to the stem peptide. These enzymes are unique and confined to the eubacteria and are absent in humans, representing potential targets for anti-tubercular drug discovery. Mtb Mur ligases with the same catalytic mechanism share conserved amino acid regions and structural features that can conceivably exploit for the designing of the inhibitors, which can simultaneously target more than one isoforms (MurC-MurF) of the enzyme. In light of these findings in the current review, we have discussed the recent advances in medicinal chemistry of Mtb Mur enzymes (MurA-MurF) and their inhibitors, offering attractive multi-targeted strategies to combat the problem of drug-resistant in M. tuberculosis.


Assuntos
Antituberculosos/farmacologia , Inibidores Enzimáticos/farmacologia , Mycobacterium tuberculosis/enzimologia , Peptídeo Sintases/antagonistas & inibidores , Peptidoglicano/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Mycobacterium tuberculosis/citologia , Peptídeo Sintases/metabolismo , Peptidoglicano/química
4.
In Silico Pharmacol ; 9(1): 23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854869

RESUMO

Since the last 4 decades, Bedaquiline has been the first drug discovered as a new kind of anti-tubercular agent and received FDA approval in December 2012 to treat pulmonary multi-drug resistance tuberculosis (MDR-TB). It demonstrates excellent efficacy against MDR-TB by effectively inhibiting mycobacterial ATP synthase. In addition to these apparent assets of Bedaquiline, potential disadvantages of Bedaquiline include inhibition of the hERG (human Ether-à-go-related gene; KCNH2), potassium channel (concurrent risk of cardiac toxicity), and risk of phospholipidosis due to its more lipophilic nature. To assist the effective treatment of MDR-TB, highly active Bedaquiline analogs that display a better safety profile are urgently needed. A structure-based virtual screening approach was used to address the toxicity problems associated with Bedaquiline. Among the virtually screened compound, CID 15947587 had significant docking affinity (- 5.636 kcal/mol) and highest binding free energy (ΔG bind - 85.2703 kcal/mol) towards the Mycobacterial ATP synthase enzyme with insignificant cardiotoxicity and lipophilicity. During MD simulation studies (50 ns), the molecule optimizes its conformation to fit better the active receptor site justifying the binding affinity. The obtained results showed that CID15947587 could be a useful template for further optimizing the MDR-TB inhibitor. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40203-021-00086-x.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA