Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(43): e2122562119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252026

RESUMO

Fever is known to be elicited by prostaglandin E2 acting on the brain, but its origin has remained disputed. We show in mice that selective deletion of prostaglandin synthesis in brain endothelial cells, but not in neural cells or myeloid cells, abolished fever induced by intravenous administration of lipopolysaccharide and that selective rescue of prostaglandin synthesis in brain endothelial cells reinstated fever. These data demonstrate that prostaglandin production in brain endothelial cells is both necessary and sufficient for eliciting fever.


Assuntos
Dinoprostona , Células Endoteliais , Febre , Animais , Camundongos , Encéfalo/citologia , Encéfalo/metabolismo , Dinoprostona/metabolismo , Células Endoteliais/metabolismo , Febre/induzido quimicamente , Lipopolissacarídeos
2.
Brain Behav Immun ; 120: 464-470, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925419

RESUMO

The ability to detect and respond to sickness in others promotes survival. Here we show that mouse dams respond to immune challenged pups by mirroring their inflammatory response. Dams with pups subjected to immune challenge displayed a marked induction of inflammatory mediators in both the brain and the periphery, accompanied by an increase in maternal behaviors and corticosterone levels. This social transmission of inflammation did not require physical contact, and it contributed to the stress hormone response in the dams. In adult dyads, interaction with an immune challenged cagemate did not elicit robust inflammatory signaling but induced an increased responsiveness to a subsequent immune challenge. The identification of social transmission of inflammation, or inflammatory responsiveness, may open new avenues for research on social behavior, just like the description of similar phenomena such as observational fear and transmitted pain has done.

3.
Brain Behav Immun ; 110: 80-84, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36813210

RESUMO

Anorexia is a common symptom during infectious and inflammatory disease. Here we examined the role of melanocortin-4 receptors (MC4Rs) in inflammation-induced anorexia. Mice with transcriptional blockage of the MC4Rs displayed the same reduction of food intake following peripheral injection of lipopolysaccharide as wild type mice but were protected against the anorexic effect of the immune challenge in a test in which fasted animals were to use olfactory cues to find a hidden cookie. By using selective virus-mediated receptor re-expression we demonstrate that the suppression of the food-seeking behavior is subserved by MC4Rs in the brain stem parabrachial nucleus, a central hub for interoceptive information involved in the regulation of food intake. Furthermore, the selective expression of MC4R in the parabrachial nucleus also attenuated the body weight increase that characterizes MC4R KO mice. These data extend on the functions of the MC4Rs and show that MC4Rs in the parabrachial nucleus are critically involved in the anorexic response to peripheral inflammation but also contribute to body weight homeostasis during normal conditions.


Assuntos
Núcleos Parabraquiais , Camundongos , Animais , Núcleos Parabraquiais/metabolismo , Anorexia/metabolismo , Neurônios/metabolismo , Peso Corporal , Inflamação/metabolismo , Melanocortinas/metabolismo , Ingestão de Alimentos/fisiologia
4.
J Neurosci ; 41(24): 5206-5218, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33941650

RESUMO

We examined the signaling route for fever during localized inflammation in male and female mice, elicited by casein injection into a preformed air pouch. The localized inflammation gave rise to high concentrations of prostaglandins of the E species (PGE2) and cytokines in the air pouch and elevated levels of these inflammatory mediators in plasma. There were also elevated levels of PGE2 in the cerebrospinal fluid, although there was little evidence for PGE2 synthesis in the brain. Global deletion of the PGE2 prostaglandin E receptor 3 (EP3) abolished the febrile response as did deletion of the EP3 receptor in neural cells, whereas its deletion on peripheral nerves had no effect, implying that PGE2 action on this receptor in the CNS elicited the fever. Global deletion of the interleukin-1 receptor type 1 (IL-1R1) also abolished the febrile response, whereas its deletion on neural cells or peripheral nerves had no effect. However, deletion of the IL-1R1 on brain endothelial cells, as well as deletion of the interleukin-6 receptor α on these cells, attenuated the febrile response. In contrast, deletion of the PGE2 synthesizing enzymes cyclooxygenase-2 and microsomal prostaglandin synthase-1 in brain endothelial cells, known to attenuate fever evoked by systemic inflammation, had no effect. We conclude that fever during localized inflammation is not mediated by neural signaling from the inflamed site, as previously suggested, but is dependent on humoral signaling that involves interleukin actions on brain endothelial cells, probably facilitating PGE2 entry into the brain from the circulation and hence representing a mechanism distinct from that at work during systemic inflammation.


Assuntos
Encéfalo/metabolismo , Endotélio/metabolismo , Febre/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Animais , Feminino , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
5.
FASEB J ; 34(4): 5863-5876, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32144818

RESUMO

We examined the role of brown adipose tissue (BAT) for fever and emotional stress-induced hyperthermia. Wild-type and uncoupling protein-1 (UCP-1) knockout mice were injected with lipopolysaccharide intraperitoneally or intravenously, or subjected to cage exchange, and body temperature monitored by telemetry. Both genotypes showed similar febrile responses to immune challenge and both displayed hyperthermia to emotional stress. Neither procedure resulted in the activation of BAT, such as the induction of UCP-1 or peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA, or reduced BAT weight and triglyceride content. In contrast, in mice injected with a ß3 agonist, UCP-1 and PGC-1α were strongly induced, and BAT weight and triglyceride content reduced. Both lipopolysaccharide and the ß3 agonist, and emotional stress, induced UCP-3 mRNA in skeletal muscle. A ß3 antagonist did not attenuate lipopolysaccharide-induced fever, but augmented body temperature decrease and inhibited BAT activation when mice were exposed to cold. An α1 /α2b antagonist or a 5HT1A agonist, which inhibit vasoconstriction, abolished lipopolysaccharide-induced fever, but had no effect on emotional stress-induced hyperthermia. These findings demonstrate that in mice, UCP-1-mediated BAT thermogenesis does not take part in inflammation-induced fever, which is dependent on peripheral vasoconstriction, nor in stress-induced hyperthermia. However, both phenomena may involve UCP-3-mediated muscle thermogenesis.


Assuntos
Tecido Adiposo Marrom/fisiopatologia , Febre/patologia , Hipertermia/patologia , Lipopolissacarídeos/toxicidade , Angústia Psicológica , Termogênese , Proteína Desacopladora 1/fisiologia , Animais , Febre/induzido quimicamente , Febre/imunologia , Hipertermia/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
FASEB J ; 32(10): 5751-5759, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29738273

RESUMO

The mode of action of paracetamol (acetaminophen), which is widely used for treating pain and fever, has remained obscure, but may involve several distinct mechanisms, including cyclooxygenase inhibition and transient receptor potential ankyrin 1 (TRPA1) channel activation, the latter being recently associated with paracetamol's propensity to elicit hypothermia at higher doses. Here, we examined whether the antipyretic effect of paracetamol was due to TRPA1 activation or cyclooxygenase inhibition. Treatment of wild-type and TRPA1 knockout mice rendered febrile by immune challenge with LPS with a dose of paracetamol that did not produce hypothermia (150 mg/kg) but is known to be analgetic, abolished fever in both genotypes. Paracetamol completely suppressed the LPS-induced elevation of prostaglandin E2 in the brain and also reduced the levels of several other prostanoids. The hypothermia induced by paracetamol was abolished in mice treated with the electrophile-scavenger N-acetyl cysteine. We conclude that paracetamol's antipyretic effect in mice is dependent on inhibition of cyclooxygenase activity, including the formation of pyrogenic prostaglandin E2, whereas paracetamol-induced hypothermia likely is mediated by the activation of TRPA1 by electrophilic metabolites of paracetamol, similar to its analgesic effect in some experimental paradigms.-Mirrasekhian, E., Nilsson, J. L. Å., Shionoya, K., Blomgren, A., Zygmunt, P. M., Engblom, D., Högestätt, E. D., Blomqvist, A. The antipyretic effect of paracetamol occurs independent of transient receptor potential ankyrin 1-mediated hypothermia and is associated with prostaglandin inhibition in the brain.


Assuntos
Acetaminofen/efeitos adversos , Antipiréticos/efeitos adversos , Encéfalo/metabolismo , Dinoprostona/biossíntese , Hipotermia/metabolismo , Canal de Cátion TRPA1/biossíntese , Acetaminofen/farmacologia , Animais , Antipiréticos/farmacologia , Encéfalo/patologia , Hipotermia/induzido quimicamente , Hipotermia/patologia , Camundongos , Camundongos Knockout
7.
Brain Behav Immun ; 77: 141-149, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30590109

RESUMO

Maternal care is crucial for infants and profoundly affects their responses to different kinds of stressors. Here, we examined how maternal separation affects inflammatory gene expression and the corticosterone response to an acute immune challenge induced by lipopolysaccharide (LPS; 40 µg/kg ip) in mouse pups, 8-9 days old. Maternal separation initially attenuated LPS-induced hypothalamic pro-inflammatory gene expression, but later, at 3 h after immune challenge, robustly augmented such gene expression and increased serum corticosterone levels. Providing the pups with a warm and soft object prevented the separation-induced augmented hypothalamic-pituitary-adrenal (HPA)-axis response. It also prevented the potentiated induction of some, but not all, inflammatory genes to a similar extent as did the dam. Our results show that maternal separation potentiates the inflammatory response and the resulting HPA-axis activation, which may have detrimental effects if separation is prolonged or repeated.


Assuntos
Ansiedade de Separação/genética , Inflamação/metabolismo , Privação Materna , Animais , Animais Recém-Nascidos , Ansiedade de Separação/fisiopatologia , Corticosterona/sangue , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Inflamação/genética , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Hipófise-Suprarrenal/metabolismo
8.
J Neurosci ; 37(19): 5035-5044, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28438967

RESUMO

Fever occurs upon binding of prostaglandin E2 (PGE2) to EP3 receptors in the median preoptic nucleus of the hypothalamus, but the origin of the pyrogenic PGE2 has not been clearly determined. Here, using mice of both sexes, we examined the role of local versus generalized PGE2 production in the brain for the febrile response. In wild-type mice and in mice with genetic deletion of the prostaglandin synthesizing enzyme cyclooxygenase-2 in the brain endothelium, generated with an inducible CreERT2 under the Slco1c1 promoter, PGE2 levels in the CSF were only weakly related to the magnitude of the febrile response, whereas the PGE2 synthesizing capacity in the hypothalamus, as reflected in the levels of cyclooxygenase-2 mRNA, showed strong correlation with the immune-induced fever. Histological analysis showed that the deletion of cyclooxygenase-2 in brain endothelial cells occurred preferentially in small- and medium-sized vessels deep in the brain parenchyma, such as in the hypothalamus, whereas larger vessels, and particularly those close to the neocortical surface and in the meninges, were left unaffected, hence leaving PGE2 synthesis largely intact in major parts of the brain while significantly reducing it in the region critical for the febrile response. Furthermore, injection of a virus vector expressing microsomal prostaglandin E synthase-1 (mPGES-1) into the median preoptic nucleus of fever-refractive mPGES-1 knock-out mice, resulted in a temperature elevation in response to LPS. We conclude that the febrile response is dependent on local release of PGE2 onto its target neurons and not on the overall PGE2 production in the brain.SIGNIFICANCE STATEMENT By using mice with selective deletion of prostaglandin synthesis in brain endothelial cells, we demonstrate that local prostaglandin E2 (PGE2) production in deep brain areas, such as the hypothalamus, which is the site of thermoregulatory neurons, is critical for the febrile response to peripheral inflammation. In contrast, PGE2 production in other brain areas and the overall PGE2 level in the brain do not influence the febrile response. Furthermore, partly restoring the PGE2 synthesizing capacity in the anterior hypothalamus of mice lacking such capacity with a lentiviral vector resulted in a temperature elevation in response to LPS. These data imply that the febrile response is dependent on the local release of PGE2 onto its target neurons, possibly by a paracrine mechanism.


Assuntos
Regulação da Temperatura Corporal/imunologia , Dinoprostona/biossíntese , Dinoprostona/imunologia , Febre/imunologia , Hipotálamo/imunologia , Inflamação/imunologia , Animais , Feminino , Febre/etiologia , Inflamação/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Proc Natl Acad Sci U S A ; 112(3): 881-6, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561533

RESUMO

Children form a strong attachment to their caregiver--even when that caretaker is abusive. Paradoxically, despite the trauma experienced within this relationship, the child develops a preference for trauma-linked cues--a phenomenon known as trauma bonding. Although infant trauma compromises neurobehavioral development, the mechanisms underlying the interaction between infant trauma bonding (i.e., learned preference for trauma cues) and the long-term effects of trauma (i.e., depressive-like behavior, amygdala dysfunction) are unknown. We modeled infant trauma bonding by using odor-shock conditioning in rat pups, which engages the attachment system and produces a life-long preference for the odor that was paired with shock. In adulthood, this trauma-linked odor rescues depressive-like behavior and amygdala dysfunction, reduces corticosterone (CORT) levels, and exerts repair-related changes at the molecular level. Amygdala microarray after rescue implicates serotonin (5-HT) and glucocorticoids (GCs), and a causal role was verified through microinfusions. Blocking amygdala 5-HT eliminates the rescue effect; increasing amygdala 5-HT and blocking systemic CORT mimics it. Our findings suggest that infant trauma cues share properties with antidepressants and safety signals and provide insight into mechanisms by which infant trauma memories remain powerful throughout life.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Comportamento , Corticosterona/metabolismo , Memória , Serotonina/metabolismo , Ferimentos e Lesões/psicologia , Adulto , Tonsila do Cerebelo/metabolismo , Humanos , Lactente
10.
Brain Behav Immun ; 66: 165-176, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28655587

RESUMO

Sickness responses to lipopolysaccharide (LPS) were examined in mice with deletion of the interleukin (IL)-1 type 1 receptor (IL-1R1). IL-1R1 knockout (KO) mice displayed intact anorexia and HPA-axis activation to intraperitoneally injected LPS (anorexia: 10 or 120µg/kg; HPA-axis: 120µg/kg), but showed attenuated but not extinguished fever (120µg/kg). Brain PGE2 synthesis was attenuated, but Cox-2 induction remained intact. Neither the tumor necrosis factor-α (TNFα) inhibitor etanercept nor the IL-6 receptor antibody tocilizumab abolished the LPS induced fever in IL-1R1 KO mice. Deletion of IL-1R1 specifically in brain endothelial cells attenuated the LPS induced fever, but only during the late, 3rd phase of fever, whereas deletion of IL-1R1 on neural cells or on peripheral nerves had little or no effect on the febrile response. We conclude that while IL-1 signaling is not critical for LPS induced anorexia or stress hormone release, IL-1R1, expressed on brain endothelial cells, contributes to the febrile response to LPS. However, also in the absence of IL-1R1, LPS evokes a febrile response, although this is attenuated. This remaining fever seems not to be mediated by IL-6 receptors or TNFα, but by some yet unidentified pyrogenic factor.


Assuntos
Anorexia/metabolismo , Febre/metabolismo , Comportamento de Doença , Receptores Tipo I de Interleucina-1/metabolismo , Hormônio Adrenocorticotrópico/sangue , Animais , Anorexia/induzido quimicamente , Encéfalo/metabolismo , Corticosterona/sangue , Ingestão de Alimentos , Células Endoteliais/metabolismo , Feminino , Febre/induzido quimicamente , Hipotálamo/metabolismo , Inflamação/sangue , Inflamação/complicações , Mediadores da Inflamação/sangue , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Knockout , Receptores Tipo I de Interleucina-1/genética
11.
Commun Integr Biol ; 16(1): 2166237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644132

RESUMO

The initiation of fever has been a matter of controversy. Based on observations of little or no induction of prostaglandin synthesizing enzymes in the brain during the first phase of fever it was suggested that fever is initiated by prostaglandin released into the circulation from cells in the liver and lungs. Here we show in the mouse that prostaglandin synthesis is rapidly induced in the brain after immune challenge. These data are consistent with our recent findings in functional experiments that prostaglandin production in brain endothelial cells is both necessary and sufficient for the generation of all phases of fever.

12.
Eur J Med Chem ; 213: 113042, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33257173

RESUMO

Paracetamol, one of the most widely used pain-relieving drugs, is deacetylated to 4-aminophenol (4-AP) that undergoes fatty acid amide hydrolase (FAAH)-dependent biotransformation into N-arachidonoylphenolamine (AM404), which mediates TRPV1-dependent antinociception in the brain of rodents. However, paracetamol is also converted to the liver-toxic metabolite N-acetyl-p-benzoquinone imine already at therapeutic doses, urging for safer paracetamol analogues. Primary amine analogues with chemical structures similar to paracetamol were evaluated for their propensity to undergo FAAH-dependent N-arachidonoyl conjugation into TRPV1 activators both in vitro and in vivo in rodents. The antinociceptive and antipyretic activity of paracetamol and primary amine analogues was examined with regard to FAAH and TRPV1 as well as if these analogues produced acute liver toxicity. 5-Amino-2-methoxyphenol (2) and 5-aminoindazole (3) displayed efficient target protein interactions with a dose-dependent antinociceptive effect in the mice formalin test, which in the second phase was dependent on FAAH and TRPV1. No hepatotoxicity of the FAAH substrates transformed into TRPV1 activators was observed. While paracetamol attenuates pyrexia via inhibition of brain cyclooxygenase, its antinociceptive FAAH substrate 4-AP was not antipyretic, suggesting separate mechanisms for the antipyretic and antinociceptive effect of paracetamol. Furthermore, compound 3 reduced fever without a brain cyclooxygenase inhibitory action. The data support our view that analgesics and antipyretics without liver toxicity can be derived from paracetamol. Thus, research into the molecular actions of paracetamol could pave the way for the discovery of analgesics and antipyretics with a better benefit-to-risk ratio.


Assuntos
Acetaminofen/química , Amidoidrolases/metabolismo , Analgésicos/química , Antipiréticos/química , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Acetaminofen/farmacologia , Aminofenóis/química , Analgésicos/farmacologia , Animais , Antipiréticos/farmacologia , Ácidos Araquidônicos/química , Encéfalo , Feminino , Humanos , Indazóis/química , Fígado , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dor/tratamento farmacológico , Medição da Dor , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos Wistar , Relação Estrutura-Atividade
13.
J Neurosci ; 29(50): 15745-55, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20016090

RESUMO

Infant rats require maternal odor learning to guide pups' proximity-seeking of the mother and nursing. Maternal odor learning occurs using a simple learning circuit including robust olfactory bulb norepinephrine (NE), release from the locus ceruleus (LC), and amygdala suppression by low corticosterone (CORT). Early-life stress increases NE but also CORT, and we questioned whether early-life stress disrupted attachment learning and its neural correlates [2-deoxyglucose (2-DG) autoradiography]. Neonatal rats were normally reared or stressed-reared during the first 6 d of life by providing the mother with insufficient bedding for nest building and were odor-0.5 mA shock conditioned at 7 d old. Normally reared paired pups exhibited typical odor approach learning and associated olfactory bulb enhanced 2-DG uptake. However, stressed-reared pups showed odor avoidance learning and both olfactory bulb and amygdala 2-DG uptake enhancement. Furthermore, stressed-reared pups had elevated CORT levels, and systemic CORT antagonist injection reestablished the age-appropriate odor-preference learning, enhanced olfactory bulb, and attenuated amygdala 2-DG. We also assessed the neural mechanism for stressed-reared pups' abnormal behavior in a more controlled environment by injecting normally reared pups with CORT. This was sufficient to produce odor aversion, as well as dual amygdala and olfactory bulb enhanced 2-DG uptake. Moreover, we assessed a unique cascade of neural events for the aberrant effects of stress rearing: the amygdala-LC-olfactory bulb pathway. Intra-amygdala CORT or intra-LC corticotropin releasing hormone (CRH) infusion supported aversion learning with intra-LC CRH infusion associated with increased olfactory bulb NE (microdialysis). These results suggest that early-life stress disturbs attachment behavior via a unique cascade of events (amygdala-LC-olfactory bulb).


Assuntos
Tonsila do Cerebelo/fisiologia , Corticosterona/fisiologia , Hormônio Liberador da Corticotropina/fisiologia , Locus Cerúleo/fisiologia , Norepinefrina/fisiologia , Bulbo Olfatório/fisiologia , Estresse Psicológico/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Aprendizagem por Associação/fisiologia , Feminino , Masculino , Comportamento Materno/fisiologia , Comportamento Materno/psicologia , Ratos , Ratos Long-Evans , Estresse Psicológico/psicologia
14.
Learn Mem ; 16(2): 114-21, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19181617

RESUMO

Both odor-preference and odor-aversion learning occur in perinatal pups before the maturation of brain structures that support this learning in adults. To characterize the development of odor learning, we compared three learning paradigms: (1) odor-LiCl (0.3M; 1% body weight, ip) and (2) odor-1.2-mA shock (hindlimb, 1 sec)--both of which consistently produce odor-aversion learning throughout life and (3) odor-0.5-mA shock, which produces an odor preference in early life but an odor avoidance as pups mature. Pups were trained at postnatal day (PN) 7-8, 12-13, or 23-24, using odor-LiCl and two odor-shock conditioning paradigms of odor-0.5-mA shock and odor-1.2-mA shock. Here we show that in the youngest pups (PN7-8), odor-preference learning was associated with activity in the anterior piriform (olfactory) cortex, while odor-aversion learning was associated with activity in the posterior piriform cortex. At PN12-13, when all conditioning paradigms produced an odor aversion, the odor-0.5-mA shock, odor-1.2-mA shock, and odor-LiCl all continued producing learning-associated changes in the posterior piriform cortex. However, only odor-0.5-mA shock induced learning-associated changes within the basolateral amygdala. At weaning (PN23-24), all learning paradigms produced learning-associated changes in the posterior piriform cortex and basolateral amygdala complex. These results suggest at least two basic principles of the development of the neurobiology of learning: (1) Learning that appears similar throughout development can be supported by neural systems showing very robust developmental changes, and (2) the emergence of amygdala function depends on the learning protocol and reinforcement condition being assessed.


Assuntos
Envelhecimento/psicologia , Tonsila do Cerebelo/crescimento & desenvolvimento , Tonsila do Cerebelo/fisiologia , Comportamento Animal/efeitos dos fármacos , Eletrochoque , Aprendizagem/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Odorantes , Paladar/efeitos dos fármacos , Animais , Autorradiografia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Cor , Sinais (Psicologia) , Medo/efeitos dos fármacos , Feminino , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/psicologia , Aprendizagem/fisiologia , Masculino , Estimulação Luminosa , Ratos , Ratos Long-Evans
15.
Mol Metab ; 39: 101022, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32446877

RESUMO

OBJECTIVES: Infections, cancer, and systemic inflammation elicit anorexia. Despite the medical significance of this phenomenon, the question of how peripheral inflammatory mediators affect the central regulation of food intake is incompletely understood. Therefore, we have investigated the sickness behavior induced by the prototypical inflammatory mediator IL-1ß. METHODS: IL-1ß was injected intravenously. To interfere with IL-1ß signaling, we deleted the essential modulator of NF-κB signaling (Nemo) in astrocytes and tanycytes. RESULTS: Systemic IL-1ß increased the activity of the transcription factor NF-κB in tanycytes of the mediobasal hypothalamus (MBH). By activating NF-κB signaling, IL-1ß induced the expression of cyclooxygenase-2 (Cox-2) and stimulated the release of the anorexigenic prostaglandin E2 (PGE2) from tanycytes. When we deleted Nemo in astrocytes and tanycytes, the IL-1ß-induced anorexia was alleviated whereas the fever response and lethargy response were unchanged. Similar results were obtained after the selective deletion of Nemo exclusively in tanycytes. CONCLUSIONS: Tanycytes form the brain barrier that mediates the anorexic effect of systemic inflammation in the hypothalamus.


Assuntos
Anorexia/etiologia , Células Ependimogliais/metabolismo , Inflamação/complicações , Inflamação/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Hibridização In Situ , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Ratos
16.
Neurobiol Learn Mem ; 92(4): 590-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19643197

RESUMO

Memory reorganization as a time-dependent process can be investigated using various learning tasks such as the taste-potentiated odor aversion (TPOA). In this paradigm rats acquire a strong aversion to an olfactory cue presented simultaneously with a gustatory cue. Together these cues are paired with a delayed visceral illness. The basolateral amygdaloid nucleus (BLA) plays a key role in TPOA acquisition but its involvement in retrieval remains unclear. We investigated the involvement of the BLA in either recent or remote retrieval of TPOA. In each case, the number of licks observed in response to the presentation of either the odor or the taste was used to assess retrieval. Before the retrieval test, rats received a bilateral infusion of lidocaine to inactivate the BLA. We observed that both recent and remote TPOA retrieval tests induced by the odor presentation were disrupted in the lidocaine-injected rats. By contrast, the BLA inactivation had no effect upon the aversion towards the taste cue regardless of the time of retrieval. The present study provides evidence that BLA functioning is necessary for retrieval of aversive odor memory, even with a long post-acquisition delay.


Assuntos
Tonsila do Cerebelo/fisiologia , Aprendizagem por Associação/fisiologia , Aprendizagem da Esquiva/fisiologia , Memória/fisiologia , Percepção Olfatória/fisiologia , Percepção Gustatória/fisiologia , Análise de Variância , Animais , Generalização do Estímulo/fisiologia , Masculino , Plasticidade Neuronal/fisiologia , Ratos , Ratos Wistar , Estatísticas não Paramétricas
17.
Neural Plast ; 2009: 754014, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19343110

RESUMO

Dishabituation is a return of a habituated response if context or contingency changes. In the mammalian olfactory system, metabotropic glutamate receptor mediated synaptic depression of cortical afferents underlies short-term habituation to odors. It was hypothesized that a known antagonistic interaction between these receptors and norepinephrine ss-receptors provides a mechanism for dishabituation. The results demonstrate that a 108 dB siren induces a two-fold increase in norepinephrine content in the piriform cortex. The same auditory stimulus induces dishabituation of odor-evoked heart rate orienting bradycardia responses in awake rats. Finally, blockade of piriform cortical norepinephrine ss-receptors with bilateral intracortical infusions of propranolol (100 microM) disrupts auditory-induced dishabituation of odor-evoked bradycardia responses. These results provide a cortical mechanism for a return of habituated sensory responses following a cross-modal alerting stimulus.


Assuntos
Estimulação Acústica , Condicionamento Psicológico/fisiologia , Habituação Psicofisiológica/fisiologia , Norepinefrina/metabolismo , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Antagonistas Adrenérgicos beta/administração & dosagem , Animais , Bradicardia , Eletrochoque , Frequência Cardíaca/fisiologia , Masculino , Odorantes , Propranolol/administração & dosagem , Ratos , Ratos Long-Evans , Receptores Adrenérgicos beta/metabolismo
18.
J Clin Invest ; 128(7): 3160-3170, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29911992

RESUMO

It is critical for survival to assign positive or negative valence to salient stimuli in a correct manner. Accordingly, harmful stimuli and internal states characterized by perturbed homeostasis are accompanied by discomfort, unease, and aversion. Aversive signaling causes extensive suffering during chronic diseases, including inflammatory conditions, cancer, and depression. Here, we investigated the role of melanocortin 4 receptors (MC4Rs) in aversive processing using genetically modified mice and a behavioral test in which mice avoid an environment that they have learned to associate with aversive stimuli. In normal mice, robust aversions were induced by systemic inflammation, nausea, pain, and κ opioid receptor-induced dysphoria. In sharp contrast, mice lacking MC4Rs displayed preference or indifference toward the aversive stimuli. The unusual flip from aversion to reward in mice lacking MC4Rs was dopamine dependent and associated with a change from decreased to increased activity of the dopamine system. The responses to aversive stimuli were normalized when MC4Rs were reexpressed on dopamine D1 receptor-expressing cells or in the striatum of mice otherwise lacking MC4Rs. Furthermore, activation of arcuate nucleus proopiomelanocortin neurons projecting to the ventral striatum increased the activity of striatal neurons in an MC4R-dependent manner and elicited aversion. Our findings demonstrate that melanocortin signaling through striatal MC4Rs is critical for assigning negative motivational valence to harmful stimuli.


Assuntos
Corpo Estriado/fisiologia , Motivação/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Comportamento Animal/fisiologia , Benzazepinas/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Dopamina/fisiologia , Antagonistas de Dopamina/administração & dosagem , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pró-Opiomelanocortina/fisiologia , Receptor Tipo 4 de Melanocortina/deficiência , Receptor Tipo 4 de Melanocortina/genética , Receptores de Dopamina D1/antagonistas & inibidores , Receptores de Dopamina D1/fisiologia , Recompensa
19.
PLoS One ; 11(4): e0153879, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27105229

RESUMO

Stress in animals causes not only immediate reactions, but may affect their biology for long periods, even across generations. Particular interest has been paid to perinatal stress, but also adolescence has been shown to be a sensitive period in mammals. So far, no systematic study has been performed of the relative importance of stress encountered during different life phases. In this study, groups of chickens were exposed to a six-day period of repeated stress during three different life phases: early (two weeks), early puberty (eight weeks) and late puberty (17 weeks), and the effects were compared to an unstressed control group. The short-term effects were assessed by behaviour, and the long-term and transgenerational effects were determined by effects on behavior and corticosterone secretion, as well as on hypothalamic gene expression. Short-term effects were strongest in the two week group and the eight week group, whereas long-term and transgenerational effects were detected in all three stress groups. However, stress at different ages affected different aspects of the biology of the chickens, and it was not possible to determine a particularly sensitive life phase. The results show that stress during puberty appears to be at least equally critical as the previously studied early life phase. These findings may have important implications for animal welfare in egg production, since laying hens are often exposed to stress during the three periods pinpointed here.


Assuntos
Galinhas/fisiologia , Estresse Fisiológico , Animais , Feminino , Estágios do Ciclo de Vida
20.
Front Behav Neurosci ; 7: 128, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098277

RESUMO

Time perception is crucial to goal attainment in humans and other animals, and interval timing also guides fundamental animal behaviors. Accumulating evidence has made it clear that in associative learning, temporal relations between events are encoded, and a few studies suggest this temporal learning occurs very rapidly. Most of these studies, however, have used methodologies that do not permit investigating the emergence of this temporal learning. In the present study we monitored respiration, ultrasonic vocalization (USV) and freezing behavior in rats in order to perform fine-grain analysis of fear responses during odor fear conditioning. In this paradigm an initially neutral odor (the conditioned stimulus, CS) predicted the arrival of an aversive unconditioned stimulus (US, footshock) at a fixed 20-s time interval. We first investigated the development of a temporal pattern of responding related to CS-US interval duration. The data showed that during acquisition with odor-shock pairings, a temporal response pattern of respiration rate was observed. Changing the CS-US interval duration from 20-s to 30-s resulted in a shift of the temporal response pattern appropriate to the new duration thus demonstrating that the pattern reflected the learning of the CS-US interval. A temporal pattern was also observed during a retention test 24 h later for both respiration and freezing measures, suggesting that the animals had stored the interval duration in long-term memory. We then investigated the role of intra-amygdalar dopaminergic transmission in interval timing. For this purpose, the D1 dopaminergic receptors antagonist SCH23390 was infused in the basolateral amygdala before conditioning. This resulted in an alteration of timing behavior, as reflected in differential temporal patterns between groups observed in a 24 h retention test off drug. The present data suggest that D1 receptor dopaminergic transmission within the amygdala is involved in temporal processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA