RESUMO
Oxidative stress and mitochondrial dysfunction are involved in the progression and pathogenesis of multiple sclerosis (MS). MitoQ is a mitochondria-targeted antioxidant that has a neuroprotective role in several mitochondrial and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Here we sought to determine the possible effects of a systematic administration of MitoQ as a therapy, using an experimental autoimmune encephalomyelitis (EAE) mouse model. We studied the beneficial effects of MitoQ in EAE mice that mimic MS like symptoms by treating EAE mice with MitoQ and pretreated C57BL6 mice with MitoQ plus EAE induction. We found that pretreatment and treatment of EAE mice with MitoQ reduced neurological disabilities associated with EAE. We also found that both pretreatment and treatment of the EAE mice with MitoQ significantly suppressed inflammatory markers of EAE, including the inhibition of inflammatory cytokines and chemokines. MitoQ treatments reduced neuronal cell loss in the spinal cord, a factor underlying motor disability in EAE mice. The neuroprotective role of MitoQ was confirmed by a neuron-glia co-culture system designed to mimic the mechanism of MS and EAE in vitro. We found that axonal inflammation and oxidative stress are associated with impaired behavioral functions in the EAE mouse model and that treatment with MitoQ can exert protective effects on neurons and reduce axonal inflammation and oxidative stress. These protective effects are likely via multiple mechanisms, including the attenuation of the robust immune response. These results suggest that MitoQ may be a new candidate for the treatment of MS.
Assuntos
Antioxidantes/farmacologia , Encefalomielite Autoimune Experimental/prevenção & controle , Inflamação/prevenção & controle , Mitocôndrias/efeitos dos fármacos , Esclerose Múltipla/prevenção & controle , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Animais , Biomarcadores/metabolismo , Western Blotting , Técnicas de Cocultura , Citocinas/metabolismo , Progressão da Doença , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Técnicas Imunoenzimáticas , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Ubiquinona/farmacologiaRESUMO
The purpose of this study was to investigate the link between mutant huntingtin (Htt) and neuronal damage in relation to mitochondria in Huntington's disease (HD). In an earlier study, we determined the relationship between mutant Htt and mitochondrial dynamics/synaptic viability in HD patients. We found mitochondrial loss, abnormal mitochondrial dynamics and mutant Htt association with mitochondria in HD patients. In the current study, we sought to expand on our previous findings and further elucidate the relationship between mutant Htt and mitochondrial and synaptic deficiencies. We hypothesized that mutant Htt, in association with mitochondria, alters mitochondrial dynamics, leading to mitochondrial fragmentation and defective axonal transport of mitochondria in HD neurons. In this study, using postmortem HD brains and primary neurons from transgenic BACHD mice, we identified mutant Htt interaction with the mitochondrial protein Drp1 and factors that cause abnormal mitochondrial dynamics, including GTPase Drp1 enzymatic activity. Further, using primary neurons from BACHD mice, for the first time, we studied axonal transport of mitochondria and synaptic degeneration. We also investigated the effect of mutant Htt aggregates and oligomers in synaptic and mitochondrial deficiencies in postmortem HD brains and primary neurons from BACHD mice. We found that mutant Htt interacts with Drp1, elevates GTPase Drp1 enzymatic activity, increases abnormal mitochondrial dynamics and results in defective anterograde mitochondrial movement and synaptic deficiencies. These observations support our hypothesis and provide data that can be utilized to develop therapeutic targets that are capable of inhibiting mutant Htt interaction with Drp1, decreasing mitochondrial fragmentation, enhancing axonal transport of mitochondria and protecting synapses from toxic insults caused by mutant Htt.
Assuntos
Axônios , GTP Fosfo-Hidrolases/metabolismo , Doença de Huntington/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Sinapses/patologia , Animais , Dinaminas , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Ligação ProteicaRESUMO
Huntington's disease (HD) is a progressive, fatal neurodegenerative disease caused by expanded polyglutamine repeats in the HD gene. HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment and emotional disturbances. Research into mutant huntingtin (Htt) and mitochondria has found that mutant Htt interacts with the mitochondrial protein dynamin-related protein 1 (Drp1), enhances GTPase Drp1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. This article summarizes latest developments in HD research and focuses on the role of abnormal mitochondrial dynamics and defective axonal transport in HD neurons. This article also discusses the therapeutic strategies that decrease mitochondrial fragmentation and neuronal damage in HD.
Assuntos
Transporte Axonal/fisiologia , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Sinapses/patologia , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/patologia , Mitocôndrias/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Proteínas Nucleares/metabolismo , Sinapses/metabolismoRESUMO
The purpose of this study was to determine the relationship between mitochondrial DNA (mtDNA) deletions, mtDNA content and aging in rhesus monkeys. Using 2 sets of specific primers, we amplified an 8 kb mtDNA fragment covering a common 5.7 kb deletion and the entire 16.5 kb mitochondrial genome in the brain and buffy-coats of young and aged monkeys. We studied a total of 66 DNA samples: 39 were prepared from a buffy-coat and 27 were prepared from occipital cortex tissues. The mtDNA data were assessed using a permutation test to identify differences in mtDNA, in the different monkey groups. Using real-time RT-PCR strategy, we also assessed both mtDNA and nuclear DNA levels for young, aged and male and female monkeys. We found a 5.7 kb mtDNA deletion in 81.8% (54 of 66) of the total tested samples. In the young group of buffy-coat DNA, we found 5.7 kb deletions in 7 of 17 (41%), and in the aged group, we found 5.7 kb deletions in 12 of 22 (54%), suggesting that the prevalence of mtDNA deletions is related to age. We found decreased mRNA levels of mtDNA in aged monkeys relative to young monkeys. The increases in mtDNA deletions and mtDNA levels in aged rhesus monkeys suggest that damaged DNA accumulates as rhesus monkeys age and these altered mtDNA changes may have physiological relevance to compensate decreased mitochondrial function.
Assuntos
Envelhecimento/genética , Dano ao DNA/genética , DNA Mitocondrial/genética , Genoma Mitocondrial , Macaca mulatta/genética , Mitocôndrias/genética , Animais , Buffy Coat/metabolismo , Encéfalo/metabolismo , Feminino , Deleção de Genes , Macaca mulatta/sangue , MasculinoRESUMO
Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer's disease (AD) progression. Loss of synapses and synaptic damage are the best correlates of cognitive deficits found in AD patients. Recent research on amyloid beta (Aß) and mitochondria in AD revealed that Aß accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AßPP) transgenic mice revealed reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aß is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aß-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.