Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 80(5): 892-902.e4, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33188727

RESUMO

Primary microRNAs (miRNAs) are the precursors of miRNAs that modulate the expression of most mRNAs in humans. They fold up into a hairpin structure that is cleaved at its base by an enzyme complex known as the Microprocessor (Drosha/DGCR8). While many of the molecular details are known, a complete understanding of what features distinguish primary miRNA from hairpin structures in other transcripts is still lacking. We develop a massively parallel functional assay termed Dro-seq (Drosha sequencing) that enables testing of hundreds of known primary miRNA substrates and thousands of single-nucleotide variants. We find an additional feature of primary miRNAs, called Shannon entropy, describing the structural ensemble important for processing. In a deep mutagenesis experiment, we observe particular apical loop U bases, likely recognized by DGCR8, are important for efficient processing. These findings build on existing knowledge about primary miRNA maturation by the Microprocessor and further explore the substrate RNA sequence-structure relationship.


Assuntos
MicroRNAs , Complexos Multiproteicos , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA , Ribonuclease III , Animais , Humanos , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/química , Ribonuclease III/metabolismo , Células Sf9 , Spodoptera
2.
Mol Cell ; 74(5): 966-981.e18, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31078383

RESUMO

High-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA-RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio-binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.


Assuntos
Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos/genética , Humanos , Cinética , Ligação Proteica/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/química , Ribossomos/química , Ribossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA