Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438524

RESUMO

CHD8 is an ATP-dependent chromatin-remodeling factor encoded by the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Although many studies have examined the consequences of CHD8 haploinsufficiency in cells and mice, few have focused on missense mutations, the most common type of CHD8 alteration in ASD patients. We here characterized CHD8 missense mutations in ASD patients according to six prediction scores and experimentally examined the effects of such mutations on the biochemical activities of CHD8, neural differentiation of embryonic stem cells, and mouse behavior. Only mutations with high prediction scores gave rise to ASD-like phenotypes in mice, suggesting that not all CHD8 missense mutations detected in ASD patients are directly responsible for the development of ASD. Furthermore, we found that mutations with high scores cause ASD by mechanisms either dependent on or independent of loss of chromatin-remodeling function. Our results thus provide insight into the molecular underpinnings of ASD pathogenesis caused by missense mutations of CHD8.

2.
Hum Mol Genet ; 30(18): 1762-1772, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34104969

RESUMO

A report of a family of Darier's disease with mood disorders drew attention when the causative gene was identified as ATP2A2 (or SERCA2), which encodes a Ca2+ pump on the endoplasmic reticulum (ER) membrane and is important for intracellular Ca2+ signaling. Recently, it was found that loss-of-function mutations of ATP2A2 confer a risk of neuropsychiatric disorders including depression, bipolar disorder and schizophrenia. In addition, a genome-wide association study found an association between ATP2A2 and schizophrenia. However, the mechanism of how ATP2A2 contributes to vulnerability to these mental disorders is unknown. Here, we analyzed Atp2a2 heterozygous brain-specific conditional knockout (hetero cKO) mice. The ER membranes prepared from the hetero cKO mouse brain showed decreased Ca2+ uptake activity. In Atp2a2 heterozygous neurons, decays of cytosolic Ca2+ level were slower than control neurons after depolarization. The hetero cKO mice showed altered behavioral responses to novel environments and impairments in fear memory, suggestive of enhanced dopamine signaling. In vivo dialysis demonstrated that extracellular dopamine levels in the NAc were indeed higher in the hetero cKO mice. These results altogether indicate that the haploinsufficiency of Atp2a2 in the brain causes prolonged cytosolic Ca2+ transients, which possibly results in enhanced dopamine signaling, a common feature of mood disorders and schizophrenia. These findings elucidate how ATP2A2 mutations causing a dermatological disease may exert their pleiotropic effects on the brain and confer a risk for mental disorders.


Assuntos
Comportamento Animal , Encéfalo/enzimologia , Doença de Darier , Dopamina/metabolismo , Mutação com Perda de Função , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Transdução de Sinais , Animais , Doença de Darier/enzimologia , Doença de Darier/genética , Dopamina/genética , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(18): 10055-10066, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32312822

RESUMO

Synaptic activity in neurons leads to the rapid activation of genes involved in mammalian behavior. ATP-dependent chromatin remodelers such as the BAF complex contribute to these responses and are generally thought to activate transcription. However, the mechanisms keeping such "early activation" genes silent have been a mystery. In the course of investigating Mendelian recessive autism, we identified six families with segregating loss-of-function mutations in the neuronal BAF (nBAF) subunit ACTL6B (originally named BAF53b). Accordingly, ACTL6B was the most significantly mutated gene in the Simons Recessive Autism Cohort. At least 14 subunits of the nBAF complex are mutated in autism, collectively making it a major contributor to autism spectrum disorder (ASD). Patient mutations destabilized ACTL6B protein in neurons and rerouted dendrites to the wrong glomerulus in the fly olfactory system. Humans and mice lacking ACTL6B showed corpus callosum hypoplasia, indicating a conserved role for ACTL6B in facilitating neural connectivity. Actl6b knockout mice on two genetic backgrounds exhibited ASD-related behaviors, including social and memory impairments, repetitive behaviors, and hyperactivity. Surprisingly, mutation of Actl6b relieved repression of early response genes including AP1 transcription factors (Fos, Fosl2, Fosb, and Junb), increased chromatin accessibility at AP1 binding sites, and transcriptional changes in late response genes associated with early response transcription factor activity. ACTL6B loss is thus an important cause of recessive ASD, with impaired neuron-specific chromatin repression indicated as a potential mechanism.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Hipocampo/patologia , Actinas/genética , Trifosfato de Adenosina/genética , Animais , Transtorno do Espectro Autista/patologia , Comportamento Animal/fisiologia , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , Pareamento Cromossômico/genética , Pareamento Cromossômico/fisiologia , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Dendritos/genética , Dendritos/fisiologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mutação/genética , Neurônios/metabolismo , Neurônios/patologia , Fatores de Transcrição/genética
4.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36983014

RESUMO

Intense itching significantly reduces the quality of life, and atopic dermatitis is associated with psychiatric conditions, such as anxiety and depression. Psoriasis, another inflammatory skin disease, is often complicated by psychiatric symptoms, including depression; however, the pathogenesis of these mediating factors is poorly understood. This study used a spontaneous dermatitis mouse model (KCASP1Tg) and evaluated the psychiatric symptoms. We also used Janus kinase (JAK) inhibitors to manage the behaviors. Gene expression analysis and RT-PCR of the cerebral cortex of KCASP1Tg and wild-type (WT) mice were performed to examine differences in mRNA expression. KCASP1Tg mice had lower activity, higher anxiety-like behavior, and abnormal behavior. The mRNA expression of S100a8 and Lipocalin 2 (Lcn2) in the brain regions was higher in KCASP1Tg mice. Furthermore, IL-1ß stimulation increased Lcn2 mRNA expression in astrocyte cultures. KCASP1Tg mice had predominantly elevated plasma Lcn2 compared to WT mice, which improved with JAK inhibition, but behavioral abnormalities in KCASP1Tg mice did not improve, despite JAK inhibition. In summary, our data revealed that Lcn2 is closely associated with anxiety symptoms, but the anxiety and depression symptoms caused by chronic skin inflammation may be irreversible. This study demonstrated that active control of skin inflammation is essential for preventing anxiety.


Assuntos
Dermatite Atópica , Qualidade de Vida , Camundongos , Animais , Dermatite Atópica/metabolismo , Inflamação/metabolismo , Ansiedade/genética , RNA Mensageiro , Pele/metabolismo
5.
Hum Mol Genet ; 29(8): 1274-1291, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32142125

RESUMO

Mutations in the gene encoding the chromatin remodeler CHD8 are strongly associated with autism spectrum disorder (ASD). CHD8 haploinsufficiency also results in autistic phenotypes in humans and mice. Although myelination defects have been observed in individuals with ASD, whether oligodendrocyte dysfunction is responsible for autistic phenotypes has remained unknown. Here we show that reduced expression of CHD8 in oligodendrocytes gives rise to abnormal behavioral phenotypes in mice. CHD8 was found to regulate the expression of many myelination-related genes and to be required for oligodendrocyte maturation and myelination. Ablation of Chd8 specifically in oligodendrocytes of mice impaired myelination, slowed action potential propagation and resulted in behavioral deficits including increased social interaction and anxiety-like behavior, with similar effects being apparent in Chd8 heterozygous mutant mice. Our results thus indicate that CHD8 is essential for myelination and that dysfunction of oligodendrocytes as a result of CHD8 haploinsufficiency gives rise to several neuropsychiatric phenotypes.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Ligação a DNA/genética , Neurogênese/genética , Fatores de Transcrição/genética , Animais , Transtorno do Espectro Autista/patologia , Montagem e Desmontagem da Cromatina/genética , Modelos Animais de Doenças , Haploinsuficiência/genética , Heterozigoto , Humanos , Camundongos , Mutação/genética , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fenótipo
6.
Nature ; 537(7622): 675-679, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27602517

RESUMO

Autism spectrum disorder (ASD) comprises a range of neurodevelopmental disorders characterized by deficits in social interaction and communication as well as by restricted and repetitive behaviours. ASD has a strong genetic component with high heritability. Exome sequencing analysis has recently identified many de novo mutations in a variety of genes in individuals with ASD, with CHD8, a gene encoding a chromatin remodeller, being most frequently affected. Whether CHD8 mutations are causative for ASD and how they might establish ASD traits have remained unknown. Here we show that mice heterozygous for Chd8 mutations manifest ASD-like behavioural characteristics including increased anxiety, repetitive behaviour, and altered social behaviour. CHD8 haploinsufficiency did not result in prominent changes in the expression of a few specific genes but instead gave rise to small but global changes in gene expression in the mouse brain, reminiscent of those in the brains of patients with ASD. Gene set enrichment analysis revealed that neurodevelopment was delayed in the mutant mouse embryos. Furthermore, reduced expression of CHD8 was associated with abnormal activation of RE-1 silencing transcription factor (REST), which suppresses the transcription of many neuronal genes. REST activation was also observed in the brains of humans with ASD, and CHD8 was found to interact physically with REST in the mouse brain. Our results are thus consistent with the notion that CHD8 haploinsufficiency is a highly penetrant risk factor for ASD, with disease pathogenesis probably resulting from a delay in neurodevelopment.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Proteínas de Ligação a DNA/genética , Haploinsuficiência/genética , Animais , Ansiedade/complicações , Ansiedade/genética , Transtorno do Espectro Autista/complicações , Encéfalo/metabolismo , Proteínas de Ligação a DNA/deficiência , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Regulação para Baixo , Predisposição Genética para Doença , Heterozigoto , Masculino , Megalencefalia/complicações , Megalencefalia/genética , Camundongos , Camundongos Knockout , Mutação , Penetrância , Fenótipo , Proteínas Repressoras/metabolismo , Comportamento Social , Transcriptoma
7.
BMC Surg ; 22(1): 111, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35321695

RESUMO

BACKGROUND: Patients with giant ovarian tumor often have severe symptoms, such as abdominal distention, and the tumor tends to grow rapidly; therefore, sufficient preoperative assessments are difficult to perform. It is not always easy to differentiate between primary and metastatic ovarian cancer, especially when the ovarian tumor is huge, since a precise diagnosis of ovarian tumor depends on the histopathological findings of the excised specimen. Although metastatic ovarian tumors account for over 20% of all malignant ovarian tumors, preoperative colonoscopy is not considered a routine examination before surgery for giant ovarian tumor. CASE PRESENTATION: We herein report 3 cases of giant (> 25 cm) ovarian tumor with colorectal cancer. All three patients visited the clinic with progressing abdominal distention, and were referred with primary ovarian malignancy. Case 1: Rectal tumor was suspected by a digital examination at the outpatient clinic, and rectal cancer was diagnosed preoperatively by colonoscopy. Computed tomography revealed a single-nodule liver tumor. Ovariectomy, rectal resection, and partial hepatectomy were performed. A histological examination revealed both primary mucinous ovarian carcinoma and rectal carcinoma with liver metastasis. Case 2: Initially, the ovarian tumor was diagnosed as primary carcinoma based on the histological findings of an incision biopsy at the previous hospital. Chemotherapy for ovarian cancer was administered without remission, and subsequently, the patient was referred to our hospital. Since the CEA level was high (142 ng/ml), colonoscopy was performed and cecal cancer was diagnosed. Ovariectomy and right colectomy were performed, and the ovarian tumor was histologically diagnosed as metastatic adenocarcinoma. Case 3: Initial ovariectomy was performed, and rectal cancer was suspected at intra-operative surveillance. Colonoscopy was performed after surgery, and rectal cancer was diagnosed. The ovarian tumor was diagnosed as metastatic adenocarcinoma. After six cycles of FOLFOX, rectal resection was performed. CONCLUSION: Regrettably, two of three cases in the current series were not diagnosed with colorectal cancer at the start of treatment. This experience suggests that screening colonoscopy should be considered before treatment for every case of giant ovarian tumor.


Assuntos
Adenocarcinoma Mucinoso , Neoplasias Ovarianas , Neoplasias Retais , Adenocarcinoma Mucinoso/diagnóstico , Colonoscopia , Detecção Precoce de Câncer , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/cirurgia , Neoplasias Retais/cirurgia
8.
Cereb Cortex ; 27(7): 3485-3501, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26762856

RESUMO

Reelin-Dab1 signaling is involved in brain development and neuronal functions. The abnormalities in the signaling through either reduction of Reelin and Dab1 gene expressions or the genomic mutations in the brain have been reported to be associated with psychiatric disorders. However, it has not been clear if the deficiency in Reelin-Dab1 signaling is responsible for symptoms of the disorders. Here, to examine the function of Reelin-Dab1 signaling in the forebrain, we generated dorsal forebrain-specific Dab1 conditional knockout mouse (Dab1 cKO) and performed a behavioral test battery on the Dab1 cKO mice. Although conventional Dab1 null mutant mice exhibit cerebellar atrophy and cerebellar ataxia, the Dab1 cKO mice had normal cerebellum and showed no motor dysfunction. Dab1 cKO mice exhibited behavioral abnormalities, including hyperactivity, decreased anxiety-like behavior, and impairment of working memory, which are reminiscent of symptoms observed in patients with psychiatric disorders such as schizophrenia and bipolar disorder. These results suggest that deficiency of Reelin-Dab1 signal in the dorsal forebrain is involved in the pathogenesis of some symptoms of human psychiatric disorders.


Assuntos
Comportamento Animal/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Transtornos Mentais/genética , Transtornos Mentais/fisiopatologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais/fisiologia , Adaptação Fisiológica/genética , Animais , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Medo/psicologia , Hipocampo/metabolismo , Hipocampo/patologia , Resposta de Imobilidade Tônica/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/etiologia , Transtornos da Memória/genética , Transtornos Mentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Proteínas do Tecido Nervoso/genética , Proteína Reelina , Reflexo de Sobressalto/genética
9.
Proc Natl Acad Sci U S A ; 112(17): 5515-20, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25922519

RESUMO

Inositol 1,4,5-trisphosphate receptor (IP3R) binding protein released with IP3 (IRBIT) contributes to various physiological events (electrolyte transport and fluid secretion, mRNA polyadenylation, and the maintenance of genomic integrity) through its interaction with multiple targets. However, little is known about the physiological role of IRBIT in the brain. Here we identified calcium calmodulin-dependent kinase II alpha (CaMKIIα) as an IRBIT-interacting molecule in the central nervous system. IRBIT binds to and suppresses CaMKIIα kinase activity by inhibiting the binding of calmodulin to CaMKIIα. In addition, we show that mice lacking IRBIT present with elevated catecholamine levels, increased locomotor activity, and social abnormalities. The level of tyrosine hydroxylase (TH) phosphorylation by CaMKIIα, which affects TH activity, was significantly increased in the ventral tegmental area of IRBIT-deficient mice. We concluded that IRBIT suppresses CaMKIIα activity and contributes to catecholamine homeostasis through TH phosphorylation.


Assuntos
Adenosil-Homocisteinase/metabolismo , Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Catecolaminas/metabolismo , Homeostase/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Adenosil-Homocisteinase/genética , Animais , Encéfalo/citologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Catecolaminas/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Fosforilação/fisiologia , Tirosina 3-Mono-Oxigenase/genética
10.
Int J Cancer ; 141(5): 1011-1017, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28555943

RESUMO

Sorafenib, a multi-kinase inhibitor, inhibits tumor angiogenesis and is the first-line systemic therapy for patients with advanced hepatocellular carcinoma (HCC). However, due to its limited effects and frequent occurrence of side effects, biomarkers are needed to predict the effects of sorafenib. We considered the possibility of using TIE-2-expressing monocytes (TEMs) to predict the response in sorafenib-treated patients with advanced HCC. TEMs serve as a diagnostic marker of HCC and are related to angiogenesis. We analyzed 25 advanced HCC patients and prospectively evaluated TEMs before (Pre TEMs) and at 1 month after initial therapy (T1m TEMs). The radiologic response was evaluated by modified Response Evaluation Criteria in Solid Tumors (mRECIST). Median survival time (MST) was significantly longer in the partial response/stable disease (PR/SD) group (21.8 months) than in the PD group (8.7 months). ΔTEMs (changes of T1m TEMs compared to Pre TEMs) were significantly lower in the PR/SD group than in the PD group. MST of the ΔTEMs low group (14.2 months) was significantly longer than that of the high group (8.7 months). Univariate and multivariate Cox regression analyses showed that ΔTEMs [hazard ratio (HR) = 8.53, 95% confidence interval (CI) = 1.51-48.16, p = 0.015] and Child-Pugh class (HR = 5.59, 95% CI = 1.06-29.63, p = 0.043) were independently associated with overall survival. Our results suggest that ΔTEMs could serve as a biomarker for predicting radiologic response and overall survival in sorafenib-treated patients with advanced HCC.


Assuntos
Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Receptor TIE-2/biossíntese , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/uso terapêutico , Área Sob a Curva , Feminino , Citometria de Fluxo , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Monócitos , Niacinamida/uso terapêutico , Projetos Piloto , Modelos de Riscos Proporcionais , Estudos Prospectivos , Curva ROC , Critérios de Avaliação de Resposta em Tumores Sólidos , Sorafenibe
11.
Hepatology ; 63(1): 83-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26458241

RESUMO

UNLABELLED: Indoleamine-2, 3-dioxygenase (IDO), an interferon-γ-inducible enzyme catalyzing tryptophan into kynurenine, exerts dual functions in infectious diseases, acting as a suppressor of intracellular pathogens and as an immune regulator. We explored the roles of IDO in hepatitis B virus (HBV) clearance from infected patients. We examined IDO activity, serum chemokines, and cytokines in 53 HBV-positive patients (25 acute hepatitis, 14 chronic hepatitis, and 14 hepatic flare) and 14 healthy volunteers. In order to clarify the mechanisms of IDO induction and its impact on HBV replication, we used a culture model consisting of human natural killer cells, plasmacytoid dendritic cells, and HBV-transfected Huh7 cells in which IDO expression is controlled. A robust activation of IDO with an inverse correlation of alanine aminotransferase at the peak was observed in patients with acute hepatitis B but not in patients with hepatic flare. In acute hepatitis patients who eventually cleared HBV, IDO activity, chemokine (C-X-C motif) ligand 9 (CXCL9), CXCL10, and CXCL11 increased at the peak of alanine aminotransferase. In contrast, in patients with hepatic flare, IDO activity remained at lower levels during the observation period, regardless of the surge of CXCL9, CXCL10, and CXCL11 at the alanine aminotransferase peak. Natural killer cells and plasmacytoid dendritic cells synergistically produced interferon-γ and interferon-α, thereby enhancing IDO activity and HBV suppression in Huh7 cells. Such suppressor capacity of IDO on HBV was abrogated in IDO-knockout cells and recovered by the reinduction of IDO in the cells. CONCLUSION: IDO is an anti-HBV effector and an indicator of subsequent immune responses operative during the early phase of infection; its activity is boosted by coexisting natural killer cells and plasmacytoid dendritic cells.


Assuntos
Hepatite B/enzimologia , Hepatite B/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Doença Aguda , Adulto , Biomarcadores/sangue , Estudos Transversais , Citocinas/sangue , Feminino , Hepatite B/sangue , Humanos , Masculino , Pessoa de Meia-Idade
12.
Int J Mol Sci ; 18(9)2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28867767

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with core symptoms that include poor social communication, restricted interests, and repetitive behaviors. Several ASD mouse models exhibit impaired social interaction, anxiety-like behavior, and elevated perseveration. Large-scale whole exome sequencing studies identified many genes putatively associated with ASD. Like chromodomain helicase DNA binding protein 8 (CHD8), the most frequently mutated gene in individuals with ASD, the candidate gene AT-rich interaction domain 1B (ARID1B) encodes a chromatin remodeling factor. Arid1b heterozygous knockout (hKO) mice exhibited ASD-like traits related to social behavior, anxiety, and perseveration, in addition to associated features reported in some cases of ASD, such as reduced weight, impaired motor coordination, and hydrocephalus. Hydrocephalus was present in 5 of 91 hKO mice, while it was not observed in wild-type littermates (0 of 188). Genome-wide gene expression patterns in Arid1b hKO mice were similar to those in ASD patients and Chd8-haploinsufficient mice, an ASD model, and to developmental changes in gene expression in fast-spiking cells in the mouse brain. Our results suggest that Arid1b haploinsufficiency causes ASD-like phenotypes in mice.


Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Ligação a DNA/genética , Haploinsuficiência/genética , Fatores de Transcrição/genética , Animais , Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal , Montagem e Desmontagem da Cromatina/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Hidrocefalia/genética , Hidrocefalia/fisiopatologia , Camundongos , Camundongos Knockout
13.
J Neurosci ; 33(36): 14549-57, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24005305

RESUMO

The noradrenergic (NA) projections arising from the locus ceruleus (LC) to the amygdala and bed nucleus of the stria terminalis have been implicated in the formation of emotional memory. Since NA neurons in the LC (LC-NA neurons) abundantly express orexin receptor-1 (OX1R) and receive prominent innervation by orexin-producing neurons, we hypothesized that an OX1R-mediated pathway is involved in the physiological fear learning process via regulation of LC-NA neurons. To evaluate this hypothesis, we examined the phenotype of Ox1r(-/-) mice in the classic cued and contextual fear-conditioning test. We found that Ox1r(-/-) mice showed impaired freezing responses in both cued and contextual fear-conditioning paradigms. In contrast, Ox2r(-/-) mice showed normal freezing behavior in the cued fear-conditioning test, while they exhibited shorter freezing time in the contextual fear-conditioning test. Double immunolabeling of Fos and tyrosine hydroxylase showed that double-positive LC-NA neurons after test sessions of both cued and contextual stimuli were significantly fewer in Ox1r(-/-) mice. AAV-mediated expression of OX1R in LC-NA neurons in Ox1r(-/-) mice restored the freezing behavior to the auditory cue to a comparable level to that in wild-type mice in the test session. Decreased freezing time during the contextual fear test was not affected by restoring OX1R expression in LC-NA neurons. These observations support the hypothesis that the orexin system modulates the formation and expression of fear memory via OX1R in multiple pathways. Especially, OX1R in LC-NA neurons plays an important role in cue-dependent fear memory formation and/or retrieval.


Assuntos
Sinais (Psicologia) , Medo , Locus Cerúleo/fisiologia , Memória , Receptores de Neuropeptídeos/metabolismo , Neurônios Adrenérgicos/metabolismo , Neurônios Adrenérgicos/fisiologia , Animais , Condicionamento Clássico , Reação de Congelamento Cataléptica , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Camundongos , Camundongos Knockout , Receptores de Orexina , Tempo de Reação , Receptores de Neuropeptídeos/genética
14.
Gan To Kagaku Ryoho ; 41(7): 893-6, 2014 Jul.
Artigo em Japonês | MEDLINE | ID: mdl-25131879

RESUMO

An 80-year-old man was diagnosed with advanced gastric cancer and underwent distal gastrectomy. Although the pathological Stage of the cancer was III A, he refused adjuvant chemotherapy. One year later, CT revealed multiple liver metastases. Therefore, he was started with S-1 administration and a complete response was obtained at 10 months after starting S-1 administration. He has maintained a complete response for 22 months after S-1 discontinuation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Ácido Oxônico/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Tegafur/uso terapêutico , Idoso de 80 Anos ou mais , Combinação de Medicamentos , Gastrectomia , Humanos , Neoplasias Hepáticas/secundário , Masculino , Indução de Remissão , Neoplasias Gástricas/patologia , Fatores de Tempo
15.
Artigo em Japonês | MEDLINE | ID: mdl-25076776

RESUMO

Schizophrenia and bipolar disorder are severe neuropsychiatric disorders, affecting about 1% of the population. Identifying endophenotypes in the brains of neuropsychiatric patients is now considered the way to understand the underlying mechanisms and to improve therapeutic outcomes. However, the endophenotypes and brain mechanisms of the disorders remain unknown. We have previously reported that alpha-CaMKII heterozygous knockout mice show abnormal behaviors related to neuropsychiatric disorders. In these mutant mice, almost all neurons in the hippocampal dentate gyrus stay at a pseudo-immature state, which we refer to as "immature dentate gyrus (iDG)." So far, the iDG phenotype and similar behavioral abnormalities have been found in Schnurri-2 knockout, SNAP-25 mutant, and forebrain-specific calcineurin knockout mice. In addition, we found that both chronic fluoxetine treatment and pilocarpine-induced seizures can reverse the maturation state of the mature neurons, resulting in the iDG phenotype in wild-type mice. Such an iDG-like phenomenon was observed in the post-mortem brains from patients with schizophrenia/bipolar disorder. Recent studies suggest that cortex and amygdala of schizophrenia patients are also at a pseudo-immature state. Based on the findings, we proposed that immaturity of certain types of cells in the brain is a potential endophenotype of neuropsychiatric disorders.


Assuntos
Transtorno Bipolar/patologia , Encéfalo/patologia , Esquizofrenia/patologia , Animais , Modelos Animais de Doenças , Endofenótipos , Humanos , Camundongos , Camundongos Knockout
16.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200234, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657185

RESUMO

BACKGROUND AND OBJECTIVES: Anti-IgLON5 disease is an autoimmune neurodegenerative disorder characterized by various phenotypes, notably sleep and movement disorders and tau pathology. Although the disease is known to be associated with the neuronal cell adhesion protein IgLON5, the physiologic function of IgLON5 remains elusive. There are conflicting views on whether autoantibodies cause loss of function, activation of IgLON5, or inflammation-associated neuronal damage, ultimately leading to the disease. We generated IgLON5 knockout (-/-) mice to investigate the functions of IgLON5 and elucidate the pathomechanism of anti-IgLON5 disease. METHODS: IgLON5 knockout (-/-) mice underwent behavioral tests investigating motor function, psychiatric function (notably anxiety and depression), social and exploratory behaviors, spatial learning and memory, and sensory perception. Histologic analysis was conducted to investigate tau aggregation in mice with tauopathy. RESULTS: IgLON5-/- mice had poorer performance in the wire hang and rotarod tests (which are tests for motor function) than wild-type mice. Moreover, IgLON5-/- mice exhibited decreased anxiety-like behavior and/or hyperactivity in behavior tests, including light/dark transition test and open field test. IgLON5-/- mice also exhibited poorer remote memory in the contextual fear conditioning test. However, neither sleeping disabilities assessed by EEG nor tau aggregation was detected in the knockout mice. DISCUSSION: These results suggest that IgLON5 is associated with activity, anxiety, motor ability, and contextual fear memory. Comparing the various phenotypes of anti-IgLON5 disease, anti-IgLON5 disease might partially be associated with loss of function of IgLON5; however, other phenotypes, such as sleep disorders and tau aggregation, can be caused by gain of function of IgLON5 and/or neuronal damage due to inflammation. Further studies are needed to elucidate the role of IgLON5 in the pathogenesis of anti-IgLON5 diseases.


Assuntos
Moléculas de Adesão Celular Neuronais , Camundongos Knockout , Fenótipo , Animais , Masculino , Camundongos , Ansiedade/imunologia , Autoanticorpos/sangue , Comportamento Animal/fisiologia , Moléculas de Adesão Celular Neuronais/deficiência , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Tauopatias/fisiopatologia , Tauopatias/imunologia , Humanos
17.
Elife ; 122024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529532

RESUMO

Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.


Assuntos
Disfunção Cognitiva , Endofenótipos , Animais , Camundongos , Humanos , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Lactatos/metabolismo , Concentração de Íons de Hidrogênio
18.
Mol Brain ; 16(1): 32, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991468

RESUMO

The serotonin transporter (5-HTT) plays a critical role in the regulation of serotonin neurotransmission. Mice genetically deficient in 5-HTT expression have been used to study the physiological functions of 5-HTT in the brain and have been proposed as a potential animal model for neuropsychiatric and neurodevelopmental disorders. Recent studies have provided evidence for a link between the gut-brain axis and mood disorders. However, the effects of 5-HTT deficiency on gut microbiota, brain function, and behavior remain to be fully characterized. Here we investigated the effects of 5-HTT deficiency on different types of behavior, the gut microbiome, and brain c-Fos expression as a marker of neuronal activation in response to the forced swim test for assessing depression-related behavior in male 5-HTT knockout mice. Behavioral analysis using a battery of 16 different tests showed that 5-HTT-/- mice exhibited markedly reduced locomotor activity, decreased pain sensitivity, reduced motor function, increased anxiety-like and depression-related behavior, altered social behavior in novel and familiar environments, normal working memory, enhanced spatial reference memory, and impaired fear memory compared to 5-HTT+/+ mice. 5-HTT+/- mice showed slightly reduced locomotor activity and impaired social behavior compared to 5-HTT+/+ mice. Analysis of 16S rRNA gene amplicons showed that 5-HTT-/- mice had altered gut microbiota abundances, such as a decrease in Allobaculum, Bifidobacterium, Clostridium sensu stricto, and Turicibacter, compared to 5-HTT+/+ mice. This study also showed that after exposure to the forced swim test, the number of c-Fos-positive cells was higher in the paraventricular thalamus and lateral hypothalamus and was lower in the prefrontal cortical regions, nucleus accumbens shell, dorsolateral septal nucleus, hippocampal regions, and ventromedial hypothalamus in 5-HTT-/- mice than in 5-HTT+/+ mice. These phenotypes of 5-HTT-/- mice partially recapitulate clinical observations in humans with major depressive disorder. The present findings indicate that 5-HTT-deficient mice serve as a good and valid animal model to study anxiety and depression with altered gut microbial composition and abnormal neuronal activity in the brain, highlighting the importance of 5-HTT in brain function and the mechanisms underlying the regulation of anxiety and depression.


Assuntos
Transtorno Depressivo Maior , Microbioma Gastrointestinal , Humanos , Camundongos , Masculino , Animais , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Camundongos Knockout , Transtorno Depressivo Maior/metabolismo , RNA Ribossômico 16S/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Ansiedade/genética , Fenótipo
19.
Mol Brain ; 16(1): 11, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658656

RESUMO

Although dyslipidemia in the brain has been implicated in neurodegenerative disorders, the molecular mechanisms underlying its pathogenesis have been largely unclear. PDZD8 is a lipid transfer protein and mice deficient in PDZD8 (PDZD8-KO mice) manifest abnormal accumulation of cholesteryl esters (CEs) in the brain due to impaired lipophagy, the degradation system of lipid droplets. Here we show the detailed mechanism of PDZD8-dependent lipophagy. PDZD8 transports cholesterol to lipid droplets (LDs), and eventually promotes fusion of LDs and lysosomes. In addition, PDZD8-KO mice exhibit growth retardation, hyperactivity, reduced anxiety and fear, increased sensorimotor gating, and impaired cued fear conditioned memory and working memory. These results indicate that abnormal CE accumulation in the brain caused by PDZD8 deficiency affects emotion, cognition and adaptive behavior, and that PDZD8 plays an important role in the maintenance of brain function through lipid metabolism.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Encéfalo , Dislipidemias , Animais , Camundongos , Encéfalo/fisiopatologia , Cognição , Dislipidemias/complicações , Medo , Metabolismo dos Lipídeos , Proteínas Adaptadoras de Transdução de Sinal/genética
20.
Neuropsychopharmacol Rep ; 42(1): 59-69, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34994529

RESUMO

AIM: Capric acid (also known as decanoic acid or C10) is one of the fatty acids in the medium-chain triglycerides (MCTs) commonly found in dietary fats. Although dietary treatment with MCTs is recently of great interest for the potential therapeutic effects on neuropsychiatric disorders, the effects of oral administration of C10 on behavior remain to be examined. This study investigated acute and chronic effects of oral administration of C10 on locomotor activity and anxiety-like and depression-related behaviors in adult male C57BL/6J mice. METHODS: To explore the acute effects of C10 administration, mice were subjected to a series of behavioral tests in the following order: light/dark transition, open field, elevated plus maze, Porsolt forced swim, and tail suspension tests, 30 minutes after oral gavage of either vehicle or C10 solution (30 mmol/kg dose in Experiment 1; 0.1, 0.3, 1.0, 3.0 mmol/kg doses in Experiment 2). Next, to examine chronic effects of C10, mice repeatedly administered with either vehicle or C10 solution (0.3, 3.0 mmol/kg doses per day, for 21 days, in Experiment 3) were subjected to behavioral tests without oral administration immediately before each test. RESULTS: The mice administrated with the high dose of C10 (30 mmol/kg) showed lower body weights, shorter distance traveled, and more anxiety-like behavior than vehicle-treated mice, and the results reached study-wide statistical significance. The C10 administration at a lower dose of 0.3 mmol/kg had no significant effects on body weights and induced nominally significantly longer distance traveled than vehicle administration. Repeated administration of C10 at a dose of 3.0 mmol/kg for more than 21 days caused lower body weights and decreased depression-related behavior, although the behavioral differences did not reach study-wide significance. CONCLUSIONS: Although these results suggest dose-dependent effects of oral administration of capric acid on locomotor activity and anxiety-like and depression-related behaviors, further study will be needed to replicate the findings and explore the underlying brain mechanisms.


Assuntos
Comportamento Animal , Depressão , Administração Oral , Animais , Ansiedade/tratamento farmacológico , Ácidos Decanoicos/farmacologia , Depressão/tratamento farmacológico , Ácidos Graxos/farmacologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA