Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Nature ; 557(7705): 439-445, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29743679

RESUMO

In vertebrate hearts, the ventricular trabecular myocardium develops as a sponge-like network of cardiomyocytes that is critical for contraction and conduction, ventricular septation, papillary muscle formation and wall thickening through the process of compaction 1 . Defective trabeculation leads to embryonic lethality2-4 or non-compaction cardiomyopathy (NCC) 5 . There are divergent views on when and how trabeculation is initiated in different species. In zebrafish, trabecular cardiomyocytes extrude from compact myocardium 6 , whereas in chicks, chamber wall thickening occurs before overt trabeculation 7 . In mice, the onset of trabeculation has not been described, but is proposed to begin at embryonic day 9.0, when cardiomyocytes form radially oriented ribs 2 . Endocardium-myocardium communication is essential for trabeculation, and numerous signalling pathways have been identified, including Notch2,8 and Neuregulin (NRG) 4 . Late disruption of the Notch pathway causes NCC 5 . Whereas it has been shown that mutations in the extracellular matrix (ECM) genes Has2 and Vcan prevent the formation of trabeculae in mice9,10 and the matrix metalloprotease ADAMTS1 promotes trabecular termination 3 , the pathways involved in ECM dynamics and the molecular regulation of trabeculation during its early phases remain unexplored. Here we present a model of trabeculation in mice that integrates dynamic endocardial and myocardial cell behaviours and ECM remodelling, and reveal new epistatic relationships between the involved signalling pathways. NOTCH1 signalling promotes ECM degradation during the formation of endocardial projections that are critical for individualization of trabecular units, whereas NRG1 promotes myocardial ECM synthesis, which is necessary for trabecular rearrangement and growth. These systems interconnect through NRG1 control of Vegfa, but act antagonistically to establish trabecular architecture. These insights enabled the prediction of persistent ECM and cardiomyocyte growth in a mouse NCC model, providing new insights into the pathophysiology of congenital heart disease.


Assuntos
Coração/embriologia , Miocárdio/citologia , Miocárdio/metabolismo , Neuregulina-1/metabolismo , Organogênese , Receptor Notch1/metabolismo , Animais , Modelos Animais de Doenças , Endocárdio/citologia , Endocárdio/metabolismo , Matriz Extracelular/metabolismo , Cardiopatias/congênito , Cardiopatias/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Neuregulina-1/genética , Receptor Notch1/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 41(2): 815-821, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33356387

RESUMO

OBJECTIVE: Myh11 encodes a myosin heavy chain protein that is specifically expressed in smooth muscle cells (SMCs) and is important for maintaining vascular wall stability. The goal of this study is to generate a Myh11 dual reporter mouse line for definitive visualization of MYH11+ SMCs in vivo. Approach and Results: We generated a Myh11 knock-in mouse model by inserting LoxP-nlacZ-4XpolyA-LoxP-H2B-GFP-polyA-FRT-Neo-FRT reporter cassette into the Myh11 gene locus. The nuclear (n) lacZ-4XpolyA cassette is flanked by 2 LoxP sites followed by H2B-GFP (histone 2B fused green fluorescent protein). Upon Cre-mediated recombination, nlacZ-stop cassette is removed thereby permitting nucleus localized H2B-GFP expression. Expression of the nuclear localized lacZ or H2B-GFP is under control of the endogenous Myh11 promoter. Nuclear lacZ was expressed specifically in SMCs at embryonic and adult stages. Following germline Cre-mediated deletion of nuclear lacZ, H2B-GFP was specifically expressed in the nuclei of SMCs. Comparison of nuclear lacZ expression with Wnt1Cre and Mef2cCre mediated-H2B-GFP expression revealed heterogenous origins of SMCs from neural crest and second heart field in the great arteries and coronary vessels adjacent to aortic root. CONCLUSIONS: The Myh11 knock-in dual reporter mouse model offers an exceptional genetic tool to visualize and trace the origins of SMCs in mice.


Assuntos
Linhagem da Célula , Rastreamento de Células , Proteínas de Fluorescência Verde/metabolismo , Óperon Lac , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fatores Etários , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Genes Reporter , Idade Gestacional , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/embriologia , Cadeias Pesadas de Miosina/genética
3.
Acta Pharmacol Sin ; 43(6): 1419-1429, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34593973

RESUMO

The multi-generation heredity trait of hypertension in human has been reported, but the molecular mechanisms underlying multi-generational inheritance of hypertension remain obscure. Recent evidence shows that prenatal inflammatory exposure (PIE) results in increased incidence of cardiovascular diseases, including hypertension. In this study we investigated whether and how PIE contributed to multi-generational inheritance of hypertension in rats. PIE was induced in pregnant rats by intraperitoneal injection of LPS or Poly (I:C) either once on gestational day 10.5 (transient stimulation, T) or three times on gestational day 8.5, 10.5, and 12.5 (persistent stimulation, P). Male offspring was chosen to study the paternal inheritance. We showed that PIE, irrespectively induced by LPS or Poly (I:C) stimulation during pregnancy, resulted in multi-generational inheritance of significantly increased blood pressure in rat descendants, and that prenatal LPS exposure led to vascular remodeling and vasoconstrictor dysfunction in both thoracic aorta and superior mesenteric artery of adult F2 offspring. Furthermore, we revealed that PIE resulted in global alteration of DNA methylome in thoracic aorta of F2 offspring. Specifically, PIE led to the DNA hypomethylation of G beta gamma (Gßγ) signaling genes in both the F1 sperm and the F2 thoracic aorta, and activation of PI3K/Akt signaling was implicated in the pathologic changes and dysregulated vascular tone of aortic tissue in F2 LPS-P offspring. Our data demonstrate that PIE reprogrammed DNA methylome of cells from the germline/mature gametes contributes to the development of hypertension in F2 PIE offspring. This study broadens the current knowledge regarding the multi-generation effect of the cumulative early life environmental factors on the development of hypertension.


Assuntos
Hereditariedade , Hipertensão , Efeitos Tardios da Exposição Pré-Natal , Animais , Epigenoma , Feminino , Humanos , Hipertensão/induzido quimicamente , Hipertensão/genética , Inflamação/induzido quimicamente , Inflamação/genética , Lipopolissacarídeos/toxicidade , Masculino , Fosfatidilinositol 3-Quinases/genética , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Ratos
4.
PLoS Genet ; 14(8): e1007578, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30110327

RESUMO

SMYD4 belongs to a family of lysine methyltransferases. We analyzed the role of smyd4 in zebrafish development by generating a smyd4 mutant zebrafish line (smyd4L544Efs*1) using the CRISPR/Cas9 technology. The maternal and zygotic smyd4L544Efs*1 mutants demonstrated severe cardiac malformations, including defects in left-right patterning and looping and hypoplastic ventricles, suggesting that smyd4 was critical for heart development. Importantly, we identified two rare SMYD4 genetic variants in a 208-patient cohort with congenital heart defects. Both biochemical and functional analyses indicated that SMYD4(G345D) was pathogenic. Our data suggested that smyd4 functions as a histone methyltransferase and, by interacting with HDAC1, also serves as a potential modulator for histone acetylation. Transcriptome and bioinformatics analyses of smyd4L544Efs*1 and wild-type developing hearts suggested that smyd4 is a key epigenetic regulator involved in regulating endoplasmic reticulum-mediated protein processing and several important metabolic pathways in developing zebrafish hearts.


Assuntos
Epigênese Genética , Histona Metiltransferases/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/genética , Adolescente , Animais , Sistemas CRISPR-Cas , Criança , Pré-Escolar , Estudos de Coortes , Modelos Animais de Doenças , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Coração/efeitos dos fármacos , Coração/embriologia , Cardiopatias Congênitas/genética , Histona Desacetilase 1/genética , Histona Desacetilase 1/fisiologia , Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Conformação Proteica , Análise de Sequência de RNA , Transcriptoma , Sequenciamento do Exoma , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
5.
J Biol Chem ; 294(52): 19877-19888, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31712309

RESUMO

Bone morphogenetic protein 10 (BMP10) is a cardiac peptide growth factor belonging to the transforming growth factor ß superfamily that critically controls cardiovascular development, growth, and maturation. It has been shown that BMP10 elicits its intracellular signaling through a receptor complex of activin receptor-like kinase 1 with morphogenetic protein receptor type II or activin receptor type 2A. Previously, we generated and characterized a transgenic mouse line expressing BMP10 from the α-myosin heavy chain gene promoter and found that these mice have normal cardiac hypertrophic responses to both physiological and pathological stimuli. In this study, we report that these transgenic mice exhibit significantly reduced levels of cardiomyocyte apoptosis and cardiac fibrosis in response to a prolonged administration of the ß-adrenoreceptor agonist isoproterenol. We further confirmed this cardioprotective function with a newly generated conditional Bmp10 transgenic mouse line, in which Bmp10 was activated in adult hearts by tamoxifen. Moreover, the intraperitoneal administration of recombinant human BMP10 was found to effectively protect hearts from injury, suggesting potential therapeutic utility of using BMP10 to prevent heart failure. Gene profiling and biochemical analyses indicated that BMP10 activates the SMAD-mediated canonical pathway and, unexpectedly, also the signal transducer and activator of transcription 3 (STAT3)-mediated signaling pathway both in vivo and in vitro Additional findings further supported the notion that BMP10's cardioprotective function likely is due to its dual activation of SMAD- and STAT3-regulated signaling pathways, promoting cardiomyocyte survival and suppressing cardiac fibrosis.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Smad/metabolismo , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/genética , Matriz Extracelular/metabolismo , Coração/efeitos dos fármacos , Humanos , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos
6.
FASEB J ; 33(11): 12800-12811, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31469601

RESUMO

The protein kinase mechanistic target of rapamycin (mTOR) performs diverse cellular functions through 2 distinct multiprotein complexes, mTOR complex (mTORC)1 and 2. Numerous studies using rapamycin, an mTORC1 inhibitor, have implicated a role for mTORC1 in several types of heart disease. People with diabetes are more susceptible to heart failure. mTORC1 activity is increased in the diabetic heart, but its functional significance remains controversial. To investigate the role of mTORC1 in the diabetic heart, we crossed OVE26 type 1 diabetic mice with transgenic mice expressing a constitutively active mTOR (mTORca) or kinase-dead mTOR (mTORkd) in the heart. The expression of mTORca or mTORkd affected only mTORC1 but not mTORC2 activities, with corresponding changes in the activities of autophagy, a cellular degradation pathway negatively regulated by mTORC1. Diabetic cardiac damage in OVE26 mice was dramatically reduced by mTORca but exacerbated by mTORkd expression as assessed by changes in cardiac function, oxidative stress, and myocyte apoptosis. These findings demonstrated that the enhanced mTORC1 signaling in the OVE26 diabetic heart was an adaptive response that limited cardiac dysfunction, suggesting that manipulations that enhance mTORC1 activity may reduce diabetic cardiac injury, in sharp contrast to the results previously obtained with rapamycin.-Xu, X., Kobayashi, S., Timm, D., Huang, Y., Zhao, F., Shou, W., Liang, Q. Enhanced mTOR complex 1 signaling attenuates diabetic cardiac injury in OVE26 mice.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos
7.
Acta Pharmacol Sin ; 41(11): 1416-1426, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32973325

RESUMO

Immunotherapies for cancers may cause severe and life-threatening cardiotoxicities. The underlying mechanisms are complex and largely elusive. Currently, there are several ongoing clinical trials based on the use of activated invariant natural killer T (iNKT) cells. The potential cardiotoxicity commonly associated with this particular immunotherapy has yet been carefully evaluated. The present study aims to determine the effect of activated iNKT cells on normal and ß-adrenergic agonist (isoproterenol, ISO)-stimulated hearts. Mice were treated with iNKT stimulants, α-galactosylceramide (αGC) or its analog OCH, respectively, to determine their effect on ISO-induced cardiac injury. We showed that administration of αGC (activating both T helper type 1 (Th1)- and T helper type 2 (Th2)-liked iNKT cells) significantly accelerated the progressive cardiac injury, leading to enhanced cardiac hypertrophy and cardiac fibrosis with prominent increases in collagen deposition and TGF-ß1, IL-6, and alpha smooth muscle actin expression. In contrast to αGC, OCH (mainly activating Th2-liked iNKT cells) significantly attenuated the progression of cardiac injury and cardiac inflammation induced by repeated infusion of ISO. Flow cytometry analysis revealed that αGC promoted inflammatory macrophage infiltration in the heart, while OCH was able to restrain the infiltration. In vitro coculture of αGC- or OCH-pretreated primary peritoneal macrophages with primary cardiac fibroblasts confirmed the profibrotic effect of αGC and the antifibrotic effect of OCH. Our results demonstrate that activating both Th1- and Th2-liked iNKT cells is cardiotoxic, while activating Th2-liked iNKT cells is likely cardiac protective, which has implied key differences among subpopulations of iNKT cells in their response to cardiac pathological stimulation.


Assuntos
Cardiomegalia/etiologia , Cardiotônicos/uso terapêutico , Galactosilceramidas/efeitos adversos , Glicolipídeos/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Células T Matadoras Naturais/efeitos dos fármacos , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Citocinas/metabolismo , Fibrose , Inflamação/prevenção & controle , Isoproterenol , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/classificação
8.
J Biol Chem ; 293(47): 18218-18229, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30262665

RESUMO

Protein phosphatase 5 (PP5), a serine/threonine phosphatase, has a wide range of biological functions and exhibits elevated expression in tumor cells. We previously reported that pp5-deficient mice have altered ataxia-telangiectasia mutated (ATM)-mediated signaling and function. However, this regulation was likely indirect, as ATM is not a known PP5 substrate. In the current study, we found that pp5-deficient mice are hypersensitive to genotoxic stress. This hypersensitivity was associated with the marked up-regulation of the tumor suppressor tumor protein p53 and its downstream targets cyclin-dependent kinase inhibitor 1A (p21), MDM2 proto-oncogene (MDM2), and phosphatase and tensin homolog (PTEN) in pp5-deficient tissues and cells. These observations suggested that PP5 plays a role in regulating p53 stability and function. Experiments conducted with p53+/-pp5+/- or p53+/-pp5-/- mice revealed that complete loss of PP5 reduces tumorigenesis in the p53+/- mice. Biochemical analyses further revealed that PP5 directly interacts with and dephosphorylates p53 at multiple serine/threonine residues, resulting in inhibition of p53-mediated transcriptional activity. Interestingly, PP5 expression was significantly up-regulated in p53-deficient cells, and further analysis of pp5 promoter activity revealed that p53 strongly represses PP5 transcription. Our results suggest a reciprocal regulatory interplay between PP5 and p53, providing an important feedback mechanism for the cellular response to genotoxic stress.


Assuntos
Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Motivos de Aminoácidos , Animais , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Regulação para Baixo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
9.
Am J Physiol Heart Circ Physiol ; 316(2): H371-H379, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499712

RESUMO

Cardiomyocyte-restricted overexpression of FK506-binding protein 12 transgenic (αMyHC-FKBP12) mice develop spontaneous atrial fibrillation (AF). The aim of the present study is to explore the mechanisms underlying the occurrence of AF in αMyHC-FKBP12 mice. Spontaneous AF was documented by telemetry in vivo and Langendorff-perfused hearts of αMyHC-FKBP12 and littermate control mice in vitro. Atrial conduction velocity was evaluated by optical mapping. The patch-clamp technique was applied to determine the potentially altered electrophysiology in atrial myocytes. Channel protein expression levels were evaluated by Western blot analyses. Spontaneous AF was recorded in four of seven αMyHC-FKBP12 mice but in none of eight nontransgenic (NTG) controls. Atrial conduction velocity was significantly reduced in αMyHC-FKBP12 hearts compared with NTG hearts. Interestingly, the mean action potential duration at 50% but not 90% was significantly prolonged in αMyHC-FKBP12 atrial myocytes compared with their NTG counterparts. Consistent with decreased conduction velocity, average peak Na+ current ( INa) density was dramatically reduced and the INa inactivation curve was shifted by approximately +7 mV in αMyHC-FKBP12 atrial myocytes, whereas the activation and recovery curves were unaltered. The Nav1.5 expression level was significantly reduced in αMyHC-FKBP12 atria. Furthermore, we found increases in atrial Cav1.2 protein levels and peak L-type Ca2+ current density and increased levels of fibrosis in αMyHC-FKBP12 atria. In summary, cardiomyocyte-restricted overexpression of FKBP12 reduces the atrial Nav1.5 expression level and mean peak INa, which is associated with increased peak L-type Ca2+ current and interstitial fibrosis in atria. The combined electrophysiological and structural changes facilitated the development of local conduction block and altered action potential duration and spontaneous AF. NEW & NOTEWORTHY This study addresses a long-standing riddle regarding the role of FK506-binding protein 12 in cardiac physiology. The work provides further evidence that FK506-binding protein 12 is a critical component for regulating voltage-gated sodium current and in so doing has an important role in arrhythmogenic physiology, such as atrial fibrillation.


Assuntos
Fibrilação Atrial/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Potenciais de Ação , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética
10.
J Cell Mol Med ; 22(7): 3638-3651, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29682889

RESUMO

We previously observed that disruption of FK506-binding protein 12.6 (FKBP12.6) gene resulted in cardiac hypertrophy in male mice. Studies showed that overexpression of FKBP12.6 attenuated thoracic aortic constriction (TAC)-induced cardiac hypertrophy in mice, whereas the adenovirus-mediated overexpression of FKBP12.6 induced hypertrophy and apoptosis in cultured neonatal cardiomyocytes, indicating that the role of FKBP12.6 in cardiac hypertrophy is still controversial. In this study, we aimed to investigate the roles and mechanisms of FKBP12.6 in angiotensin II (AngII)-induced cardiac hypertrophy using various transgenic mouse models in vivo and in vitro. FKBP12.6 knockout (FKBP12.6-/- ) mice and cardiac-specific FKBP12.6 overexpressing (FKBP12.6 TG) mice were infused with AngII (1500 ng/kg/min) for 14 days subcutaneously by implantation of an osmotic mini-pump. The results showed that FKBP12.6 deficiency aggravated AngII-induced cardiac hypertrophy, while cardiac-specific overexpression of FKBP12.6 prevented hearts from the hypertrophic response to AngII stimulation in mice. Consistent with the results in vivo, overexpression of FKBP12.6 in H9c2 cells significantly repressed the AngII-induced cardiomyocyte hypertrophy, seen as reductions in the cell sizes and the expressions of hypertrophic genes. Furthermore, we demonstrated that the protection of FKBP12.6 on AngII-induced cardiac hypertrophy was involved in reducing the concentration of intracellular Ca2+ ([Ca2+ ]i), in which the protein significantly inhibited the key Ca2+ /calmodulin-dependent signalling pathways such as calcineurin/cardiac form of nuclear factor of activated T cells 4 (NFATc4), calmodulin kinaseII (CaMKII)/MEF-2, AKT/Glycogen synthase kinase 3ß (GSK3ß)/NFATc4 and AKT/mTOR signalling pathways. Our study demonstrated that FKBP12.6 protects heart from AngII-induced cardiac hypertrophy through inhibiting Ca2+ /calmodulin-mediated signalling pathways.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Cardiomegalia/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Angiotensina II/metabolismo , Angiotensina II/toxicidade , Animais , Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Linhagem Celular , Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a Tacrolimo/genética
12.
Lab Invest ; 98(11): 1375-1383, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29802338

RESUMO

We generated cornea-specific plakoglobin (Jup; junctional plakoglobin) knockout mice in order to investigate the function of plakoglobin on the maintenance of the homeostasis of corneal epithelium in mice. Cornea epithelium-specific conditional knockouts (JupCEΔ/CEΔ) (cKO) were obtained by breeding keratin12-Cre (Krt12-Cre) mice to Jup-floxed (Jupf/f) mice. Light and transmission electron microscopic and immunohistochemical analyses were carried out to determine consequence of the loss of plakoglobin on maintaining corneal epithelium integrity under mechanical stress, e.g., brushing and wound healing. Immunohistochemistry analysis demonstrated that, although Jup ablation did not affect BrdU incorporation, basal cell-like cells labeled for keratin 14 were ectopically present in the supra-basal layer in mutant corneal epithelium, suggestive of altered cell differentiation. Plakoglobin-deficient epithelium exhibits increased fragility against mechanical intervention when compared to wild-type controls under identical treatment. Closure of an epithelial defect was significantly delayed in JupCEΔ/CEΔ epithelium. Our findings indicate that the lack of plakoglobin significantly affects corneal epithelium differentiation, as well as its structural integrity. Plakoglobin is essential to the maintenance of the structure of the corneal epithelium and its wound healing.


Assuntos
Epitélio Corneano/fisiologia , Cicatrização , gama Catenina/fisiologia , Animais , Lesões da Córnea , Epitélio Corneano/ultraestrutura , Camundongos Transgênicos
13.
Pediatr Cardiol ; 39(6): 1099-1106, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29766225

RESUMO

Ventricular trabeculation and compaction are two essential morphogenetic events for generating a functionally competent ventricular wall. A significant reduction in trabeculation is usually associated with hypoplastic wall and ventricular compact zone deficiencies, which commonly leads to embryonic heart failure and early embryonic lethality. In contrast, the arrest of ventricular wall compaction (noncompaction) is believed to be causative to the left ventricular noncompaction (LVNC), a genetically heterogeneous disorder and the third most common cardiomyopathy among pediatric patients. After critically reviewing recent findings from genetically engineered mouse models, we suggest a model which proposes that defects in myofibrillogenesis and polarization in trabecular cardiomyocytes underly the common pathogenic mechanism for ventricular noncompaction.


Assuntos
Ventrículos do Coração/embriologia , Miocárdio Ventricular não Compactado Isolado/etiologia , Modelos Cardiovasculares , Animais , Cardiomiopatias/fisiopatologia , Proliferação de Células , Insuficiência Cardíaca/etiologia , Humanos , Miocárdio Ventricular não Compactado Isolado/genética , Camundongos , Miócitos Cardíacos/citologia
14.
Circulation ; 133(1): 48-61, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26628621

RESUMO

BACKGROUND: ß-Adrenergic receptors (ßARs) play paradoxical roles in the heart. On one hand, ßARs augment cardiac performance to fulfill the physiological demands, but on the other hand, prolonged activations of ßARs exert deleterious effects that result in heart failure. The signal transducer and activator of transcription 3 (STAT3) plays a dynamic role in integrating multiple cytokine signaling pathways in a number of tissues. Altered activation of STAT3 has been observed in failing hearts in both human patients and animal models. Our objective is to determine the potential regulatory roles of STAT3 in cardiac ßAR-mediated signaling and function. METHODS AND RESULTS: We observed that STAT3 can be directly activated in cardiomyocytes by ß-adrenergic agonists. To follow up this finding, we analyzed ßAR function in cardiomyocyte-restricted STAT3 knockouts and discovered that the conditional loss of STAT3 in cardiomyocytes markedly reduced the cardiac contractile response to acute ßAR stimulation, and caused disengagement of calcium coupling and muscle contraction. Under chronic ß-adrenergic stimulation, Stat3cKO hearts exhibited pronounced cardiomyocyte hypertrophy, cell death, and subsequent cardiac fibrosis. Biochemical and genetic data supported that Gαs and Src kinases are required for ßAR-mediated activation of STAT3. Finally, we demonstrated that STAT3 transcriptionally regulates several key components of ßAR pathway, including ß1AR, protein kinase A, and T-type Ca(2+) channels. CONCLUSIONS: Our data demonstrate for the first time that STAT3 has a fundamental role in ßAR signaling and functions in the heart. STAT3 serves as a critical transcriptional regulator for ßAR-mediated cardiac stress adaption, pathological remodeling, and heart failure.


Assuntos
Coração/fisiologia , Receptores Adrenérgicos beta/fisiologia , Fator de Transcrição STAT3/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Linhagem Celular , Coração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Técnicas de Cultura de Órgãos
16.
Development ; 140(9): 1946-57, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23571217

RESUMO

Trabeculation and compaction of the embryonic myocardium are morphogenetic events crucial for the formation and function of the ventricular walls. Fkbp1a (FKBP12) is a ubiquitously expressed cis-trans peptidyl-prolyl isomerase. Fkbp1a-deficient mice develop ventricular hypertrabeculation and noncompaction. To determine the physiological function of Fkbp1a in regulating the intercellular and intracellular signaling pathways involved in ventricular trabeculation and compaction, we generated a series of Fkbp1a conditional knockouts. Surprisingly, cardiomyocyte-restricted ablation of Fkbp1a did not give rise to the ventricular developmental defect, whereas endothelial cell-restricted ablation of Fkbp1a recapitulated the ventricular hypertrabeculation and noncompaction observed in Fkbp1a systemically deficient mice, suggesting an important contribution of Fkbp1a within the developing endocardia in regulating the morphogenesis of ventricular trabeculation and compaction. Further analysis demonstrated that Fkbp1a is a novel negative modulator of activated Notch1. Activated Notch1 (N1ICD) was significantly upregulated in Fkbp1a-ablated endothelial cells in vivo and in vitro. Overexpression of Fkbp1a significantly reduced the stability of N1ICD and direct inhibition of Notch signaling significantly reduced hypertrabeculation in Fkbp1a-deficient mice. Our findings suggest that Fkbp1a-mediated regulation of Notch1 plays an important role in intercellular communication between endocardium and myocardium, which is crucial in controlling the formation of the ventricular walls.


Assuntos
Endocárdio/metabolismo , Ventrículos do Coração/patologia , Miocárdio/metabolismo , Receptor Notch1/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Linhagem da Célula , Células Cultivadas , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário , Endocárdio/embriologia , Endocárdio/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout/embriologia , Camundongos Knockout/metabolismo , Miocárdio/patologia , Crista Neural/metabolismo , Crista Neural/patologia , Fenótipo , Receptor Notch1/genética , Transdução de Sinais , Proteínas de Ligação a Tacrolimo/genética , Transfecção
17.
Am J Pathol ; 185(12): 3274-89, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26485505

RESUMO

γ-Catenin, an important component of desmosomes, may also participate in Wnt signaling. Herein, we dissect the role of γ-catenin in liver by generating conditional γ-catenin knockout (KO) mice and assessing their phenotype after bile duct ligation (BDL) and diethylnitrosamine-induced chemical carcinogenesis. At baseline, KO and wild-type littermates showed comparable serum biochemistry, liver histology, and global gene expression. ß-Catenin protein was modestly increased without any change in Wnt signaling. Desmosomes were maintained in KO, and despite no noticeable changes in gene expression, differential detergent fractionation revealed quantitative and qualitative changes in desmosomal cadherins, plaque proteins, and ß-catenin. Enhanced association of ß-catenin to desmoglein-2 and plakophilin-3 was observed in KO. When subjected to BDL, wild-type littermates showed specific changes in desmosomal protein expression. In KO, BDL deteriorated baseline compensatory changes, which manifested as enhanced injury and fibrosis. KO also showed enhanced tumorigenesis to diethylnitrosamine treatment because of Wnt activation, as also verified in vitro. γ-Catenin overexpression in hepatoma cells increased its binding to T-cell factor 4 at the expense of ß-catenin-T-cell factor 4 association, induced unique target genes, affected Wnt targets, and reduced cell proliferation and viability. Thus, γ-catenin loss in liver is basally well tolerated. However, after insults like BDL, these compensations at desmosomes fail, and KO show enhanced injury. Also, γ-catenin negatively regulates tumor growth by affecting Wnt signaling.


Assuntos
Colestase/metabolismo , Desmossomos/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Fígado/metabolismo , gama Catenina/fisiologia , Animais , Ductos Biliares/cirurgia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colestase/patologia , Dietilnitrosamina , Feminino , Regulação da Expressão Gênica/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiologia , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Via de Sinalização Wnt/fisiologia , beta Catenina/fisiologia , gama Catenina/deficiência , gama Catenina/genética
18.
Proc Natl Acad Sci U S A ; 110(29): 11887-92, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23812757

RESUMO

Many important signaling pathways rely on multiple ligands. It is unclear if this is a mechanism of safeguard via redundancy or if it serves other functional purposes. In this study, we report unique insight into this question by studying the activin receptor-like kinase 1 (ALK1) pathway. Despite its functional importance in vascular development, the physiological ligand or ligands for ALK1 remain to be determined. Using conventional knockout and specific antibodies against bone morphogenetic protein 9 (BMP9) or BMP10, we showed that BMP9 and BMP10 are the physiological, functionally equivalent ligands of ALK1 in vascular development. Timing of expression dictates the in vivo requisite role of each ligand, and concurrent expression results in redundancy. We generated mice (Bmp10(9/9)) in which the coding sequence of Bmp9 replaces that of Bmp10. Surprisingly, analysis of Bmp10(9/9) mice demonstrated that BMP10 has an exclusive function in cardiac development, which cannot be substituted by BMP9. Our study reveals context-dependent significance in having multiple ligands in a signaling pathway.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Sistema Cardiovascular/embriologia , Sistema Cardiovascular/crescimento & desenvolvimento , Fator 2 de Diferenciação de Crescimento/metabolismo , Transdução de Sinais/fisiologia , Receptores de Activinas Tipo II , Animais , Anticorpos Neutralizantes , Proteínas Morfogenéticas Ósseas/genética , Sistema Cardiovascular/metabolismo , Técnicas de Introdução de Genes , Fator 2 de Diferenciação de Crescimento/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Hibridização In Situ , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/metabolismo
19.
Int J Mol Sci ; 17(8)2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27527158

RESUMO

FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR)-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO) mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1) Fkbp5 KO and wild-type (WT) EtOH consumption was tested using a two-bottle choice paradigm; (2) The EtOH elimination rate was measured after intraperitoneal (IP) injection of 2.0 g/kg EtOH; (3) Blood alcohol concentration (BAC) was measured after 3 h limited access of alcohol; (4) Brain region expression of Fkbp5 was identified using LacZ staining; (5) Baseline corticosterone (CORT) was assessed. Additionally, two SNPs, rs1360780 (C/T) and rs3800373 (T/G), were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162) from 21-26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT). Finally, single nucleotide polymorphisms (SNPs) in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Proteínas de Ligação a Tacrolimo/genética , Adulto , Consumo de Bebidas Alcoólicas/sangue , Consumo de Bebidas Alcoólicas/psicologia , Animais , Povo Asiático/genética , Encéfalo/metabolismo , Corticosterona/metabolismo , Etanol/sangue , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética , Estresse Psicológico/genética , Proteínas de Ligação a Tacrolimo/deficiência , População Branca/genética , Adulto Jovem
20.
J Biol Chem ; 289(6): 3799-810, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24371141

RESUMO

The Phosphatase of Regenerating Liver (PRL) proteins promote cell signaling and are oncogenic when overexpressed. However, our understanding of PRL function came primarily from studies with cultured cell lines aberrantly or ectopically expressing PRLs. To define the physiological roles of the PRLs, we generated PRL2 knock-out mice to study the effects of PRL deletion in a genetically controlled, organismal model. PRL2-deficient male mice exhibit testicular hypotrophy and impaired spermatogenesis, leading to decreased reproductive capacity. Mechanistically, PRL2 deficiency results in elevated PTEN level in the testis, which attenuates the Kit-PI3K-Akt pathway, resulting in increased germ cell apoptosis. Conversely, increased PRL2 expression in GC-1 cells reduces PTEN level and promotes Akt activation. Our analyses of PRL2-deficient animals suggest that PRL2 is required for spermatogenesis during testis development. The study also reveals that PRL2 promotes Kit-mediated PI3K/Akt signaling by reducing the level of PTEN that normally antagonizes the pathway. Given the strong cancer susceptibility to subtle variations in PTEN level, the ability of PRL2 to repress PTEN expression qualifies it as an oncogene and a novel target for developing anti-cancer agents.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Feminino , Células Germinativas/citologia , Células Germinativas/metabolismo , Proteínas Imediatamente Precoces/genética , Masculino , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Espermatogênese/fisiologia , Testículo/citologia , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA