Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Insect Sci ; 17(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28423421

RESUMO

The current Zika health crisis in the Americas has created an intense interest in mosquito control methods and products. Mosquito vectors of Zika are of the genus Aedes, mainly the yellow fever mosquito, Aedes aegypti. L. The use of repellents to alter mosquito host seeking behavior is an effective method for the prevention of mosquito-borne diseases. A large number of different spray-on repellents and wearable repellent devices are commercially available. The efficacies of many repellents are unknown. This study focuses on the efficacy of eleven different repellents in reducing the number of Ae. aegypti female mosquitoes attracted to human bait. We performed attraction-inhibition assays using a taxis cage in a wind tunnel setting. One person was placed upwind of the taxis cage and the mosquito movement towards or away from the person was recorded. The person was treated with various spray-on repellents or equipped with different mosquito repellent devices. We found that the spray-on repellents containing N,N-Diethyl-meta-toluamide and p-menthane-3,8-diol had the highest efficacy in repelling mosquitoes compared to repellents with other ingredients. From the five wearable devices that we tested, only the one that releases Metofluthrin significantly reduced the numbers of attracted mosquitoes. The citronella candle had no effect. We conclude that many of the products that we tested that were marketed as repellents do not reduce mosquito attraction to humans.


Assuntos
Aedes , Repelentes de Insetos , Controle de Mosquitos , Aedes/fisiologia , Animais , Quimiotaxia , Feminino , Humanos
2.
Artif Organs ; 40(11): 1071-1078, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26713514

RESUMO

Taylor vortices in a miniature mixed-flow rotodynamic blood pump were investigated using micro-scale particle image velocimetry (µ-PIV) and a tracer particle visualization technique. The pump featured a cylindrical rotor (14.9 mm diameter) within a cylindrical bore, having a radial clearance of 500 µm and operated at rotational speeds varying from 1000 to 12 000 rpm. Corresponding Taylor numbers were 700-101 800, respectively. The critical Taylor number was observed to be highly dependent on the ratio of axial to circumferential velocity, increasing from 1200 to 18 000 corresponding to Rossby numbers from 0 to 0.175. This demonstrated a dramatic stabilizing effect of the axial flow. The size of Taylor vortices was also found to be inversely related to Rossby number. It is concluded that Taylor vortices can enhance the mixing in the annular gap and decrease the dwell time of blood cells in the high-shear-rate region, which has the potential to decrease hemolysis and platelet activation within the blood pump.


Assuntos
Desenho de Equipamento , Coração Auxiliar/efeitos adversos , Hidrodinâmica , Hemólise , Microfluídica , Modelos Cardiovasculares , Ativação Plaquetária , Reologia
3.
Artif Organs ; 38(4): 316-26, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23889536

RESUMO

The clinical importance of pulsatility is a recurring topic of debate in mechanical circulatory support. Lack of pulsatility has been identified as a possible factor responsible for adverse events and has also demonstrated a role in myocardial perfusion and cardiac recovery. A commonly used method for restoring pulsatility with rotodynamic blood pumps (RBPs) is to modulate the speed profile, synchronized to the cardiac cycle. This introduces additional parameters that influence the (un)loading of the heart, including the timing (phase shift) between the native cardiac cycle and the pump pulses, and the amplitude of speed modulation. In this study, the impact of these parameters upon the heart-RBP interaction was examined in terms of the pressure head-flow (HQ) diagram. The measurements were conducted using a rotodynamic Deltastream DP2 pump in a validated hybrid mock circulation with baroreflex function. The pump was operated with a sinusoidal speed profile, synchronized to the native cardiac cycle. The simulated ventriculo-aortic cannulation showed that the level of (un)loading and the shape of the HQ loops strongly depend on the phase shift. The HQ loops displayed characteristic shapes depending on the phase shift. Increased contribution of native contraction (increased ventricular stroke work [WS ]) resulted in a broadening of the loops. It was found that the previously described linear relationship between WS and the area of the HQ loop for constant pump speeds becomes a family of linear relationships, whose slope depends on the phase shift.


Assuntos
Coração Auxiliar , Modelos Cardiovasculares , Desenho de Prótese , Fluxo Pulsátil , Hemodinâmica , Humanos , Pressão
4.
Phys Fluids (1994) ; 32(12): 127112, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33362404

RESUMO

Day-to-day observations reveal numerous medical and social situations where maintaining physical distancing is either not feasible or not practiced during the time of a viral pandemic, such as, the coronavirus disease 2019 (COVID-19). During these close-up, face-to-face interactions, a common belief is that a susceptible person wearing a face mask is safe, at least to a large extent, from foreign airborne sneeze and cough droplets. This study, for the first time, quantitatively verifies this notion. Droplet flow visualization experiments of a simulated face-to-face interaction with a mask in place were conducted using the particle image velocimetry setup. Five masks were tested in a snug-fit configuration (i.e., with no leakage around the edges): N-95, surgical, cloth PM 2.5, cloth, and wetted cloth PM 2.5. Except for the N-95 mask, the findings showed leakage of airborne droplets through all the face masks in both the configurations of (1) a susceptible person wearing a mask for protection and (2) a virus carrier wearing a mask to prevent the spreading of the virus. When the leakage percentages of these airborne droplets were expressed in terms of the number of virus particles, it was found that masks would not offer complete protection to a susceptible person from a viral infection in close (e.g., <6 ft) face-to-face or frontal human interactions. Therefore, consideration must be given to minimize or avoid such interactions, if possible. This study lends quantitative support to the social distancing and mask-wearing guidelines proposed by the medical research community.

5.
Artif Organs ; 33(9): 757-62, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19775268

RESUMO

Fluid dynamic analysis of turbodynamic blood pumps (TBPs) is often conducted under steady flow conditions. However, the preponderance of clinical applications for ventricular assistance involves unsteady, pulsatile flow-due to the residual contractility of the native heart. This study was undertaken to demonstrate the importance of pulsatility and the associated time derivative of the flow rate (dQ/dt) on hemodynamics within a clinical-scale TBP. This was accomplished by performing flow visualization studies on a transparent model of a centrifugal TBP interposed within a cardiovascular simulator with controllable heart rate and stroke volume. Particle image velocimetry triggered to both the rotation angle of the impeller and phase of the cardiac cycle was used to quantify the velocity field in the outlet volute and in between the impeller blades for 16 phases of the cardiac cycle. Comparison of the unsteady flow fields to corresponding steady conditions at the same (instantaneous) flow rates revealed marked differences. In particular, deceleration of flow was found to promote separation within the outlet diffuser, while acceleration served to stabilize the velocity field. The notable differences between the acceleration and deceleration phases illustrated the prominence of inertial fluid forces. These studies emphasize the importance of dQ/dt as an independent variable for thorough preclinical validation of TBPs intended for use as a ventricular assist device.


Assuntos
Circulação Sanguínea , Coração Auxiliar , Modelos Cardiovasculares , Fluxo Pulsátil , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Centrifugação , Desenho de Equipamento , Frequência Cardíaca , Magnetismo , Teste de Materiais , Reologia/métodos , Volume Sistólico , Fatores de Tempo
6.
Artif Organs ; 33(4): 334-45, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19335410

RESUMO

Renal Solutions Allient Sorbent Hemodialysis System utilizes a two-chambered pneumatic pump (Pulsar Blood Pump, Renal Solutions, Inc., Warrendale, PA, USA) to avoid limitations associated with peristaltic pumping systems. Single-needle access is enabled by counter-pulsing the two pump chambers, thereby obviating compliance chambers or blood reservoirs. Each chamber propels 20 cc per pulse of 3 s (dual access) or 6 s (single access) duration, corresponding to a peak Reynolds number of approximately 8000 (based on inlet velocity and chamber diameter). A multimodal series of flow visualization studies (tracer particle, dye washout, and dye erosion) was conducted on a sequence of pump designs with varying port locations and diaphragms to improve the geometry with respect to risk of thrombogenesis. Experiments were conducted in a simplified flow loop using occluders to simulate flow resistance induced by tubing and dialyzer. Tracer visualization revealed flow patterns and qualitatively indicated turbulence intensity. Dye washout identified dwell volume and areas of flow stagnation for each design. Dye erosion results indicated the effectiveness and homogeneity of surface washing. Compared to a centered inlet which resulted in a fluid jet that produced two counter-rotating vortices, a tangential inlet introduced a single vortex, and kept the flow laminar. It also provided better surface washing on the pump inner surface. However, a tangential outlet did not present as much benefit as expected. On the contrary, it created a sharp defection to the flow when transiting from filling to ejection.


Assuntos
Coração Auxiliar , Diálise Renal/instrumentação , Técnica de Diluição de Corante , Desenho de Equipamento , Segurança de Equipamentos , Coração Auxiliar/efeitos adversos , Hemorreologia , Teste de Materiais , Diálise Renal/efeitos adversos , Trombose/etiologia , Trombose/prevenção & controle
7.
Cardiovasc Eng Technol ; 6(3): 230-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26577357

RESUMO

Rotodynamic blood pumps (also known as rotary or continuous flow blood pumps) are commonly evaluated in vitro under steady flow conditions. However, when these devices are used clinically as ventricular assist devices (VADs), the flow is pulsatile due to the contribution of the native heart. This study investigated the influence of this unsteady flow upon the internal hemodynamics of a centrifugal blood pump. The flow field within the median axial plane of the flow path was visualized with particle image velocimetry (PIV) using a transparent replica of the Levacor VAD. The replica was inserted in a dynamic cardiovascular simulator that synchronized the image acquisition to the cardiac cycle. As compared to steady flow, pulsatile conditions produced periodic, transient recirculation regions within the impeller and separation in the outlet diffuser. Dimensional analysis revealed that the flow characteristics could be uniquely described by the non-dimensional flow coefficient (Φ) and its time derivative ([Formula: see text]), thereby eliminating impeller speed from the experimental matrix. Four regimes within the Φ-[Formula: see text] plane were found to classify the flow patterns, well-attached or disturbed. These results and methods can be generalized to provide insights for both design and operation of rotodynamic blood pumps for safety and efficacy.


Assuntos
Coração Auxiliar , Hemodinâmica , Hidrodinâmica , Função Ventricular , Velocidade do Fluxo Sanguíneo , Centrifugação/instrumentação , Desenho de Equipamento , Frequência Cardíaca , Modelos Cardiovasculares , Reologia
8.
Ann Biomed Eng ; 36(7): 1130-41, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18418710

RESUMO

Microscopic steps and crevices are inevitable features within prosthetic blood-contacting devices. This study aimed to elucidate the thrombogenicity of the associated microscopic flow features by studying the transport of fluorescent platelet-sized particles in a suspension of red blood cells (RBCs) flowing through a 100 microm:200 microm sudden expansion. Micro-flow visualization revealed a strong influence of hematocrit upon the path of RBCs and spatial concentration of particles. At all flow rates studied (Re = 8.3-41.7) and hematocrit 20% and lower, RBC streamlines were found to detach from the microchannel wall creating an RBC-depleted zone inside the step that was much larger than the cells themselves. However, the observed distribution of particles was relatively homogeneous. By contrast, the RBC streamlines of samples with hematocrit equal to or greater than 30% more closely followed the contour of the microchannel, yet exhibited enhanced concentration of particles within the corner. The corresponding size of the cell depletion layer was comparable with the size of the cells. This study implies that local platelet concentration in blood within the physiological range of hematocrit can be elevated within the flow separation region of a sudden expansion and implicates the role of RBCs in causing this effect.


Assuntos
Células Sanguíneas/fisiologia , Plaquetas/fisiologia , Citometria de Fluxo/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Microscopia de Fluorescência/instrumentação , Ativação Plaquetária/fisiologia , Células Sanguíneas/citologia , Plaquetas/citologia , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Citometria de Fluxo/métodos , Humanos , Interpretação de Imagem Assistida por Computador/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA