Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 573(7775): 558-562, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31554980

RESUMO

High-pressure transitions are thought to modify hydrogen molecules to a molecular metallic solid and finally to an atomic metal1, which is predicted to have exotic physical properties and the topology of a two-component (electron and proton) superconducting superfluid condensate2,3. Therefore, understanding such transitions remains an important objective in condensed matter physics4,5. However, measurements of the crystal structure of solid hydrogen, which provides crucial information about the metallization of hydrogen under compression, are lacking for most high-pressure phases, owing to the considerable technical challenges involved in X-ray and neutron diffraction measurements under extreme conditions. Here we present a single-crystal X-ray diffraction study of solid hydrogen at pressures of up to 254 gigapascals that reveals the crystallographic nature of the transitions from phase I to phases III and IV. Under compression, hydrogen molecules remain in the hexagonal close-packed (hcp) crystal lattice structure, accompanied by a monotonic increase in anisotropy. In addition, the pressure-dependent decrease of the unit cell volume exhibits a slope change when entering phase IV, suggesting a second-order isostructural phase transition. Our results indicate that the precursor to the exotic two-component atomic hydrogen may consist of electronic transitions caused by a highly distorted hcp Brillouin zone and molecular-symmetry breaking.


Assuntos
Hidrogênio/química , Modelos Moleculares , Pressão , Eletrônica , Difração de Nêutrons , Transição de Fase , Difração de Raios X
2.
Phys Rev Lett ; 126(3): 036402, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543962

RESUMO

Metallization of hydrogen as a key problem in modern physics is the pressure-induced evolution of the hydrogen electronic band from a wide-gap insulator to a closed gap metal. However, due to its remarkably high energy, the electronic band gap of insulating hydrogen has never before been directly observed under pressure. Using high-brilliance, high-energy synchrotron radiation, we developed an inelastic x-ray probe to yield the hydrogen electronic band information in situ under high pressures in a diamond-anvil cell. The dynamic structure factor of hydrogen was measured over a large energy range of 45 eV. The electronic band gap was found to decrease linearly from 10.9 to 6.57 eV, with an 8.6 times densification (ρ/ρ_{0}∼8.6) from zero pressure up to 90 GPa.

3.
Proc Natl Acad Sci U S A ; 115(11): 2676-2680, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29483248

RESUMO

Formation of natural diamonds requires the reduction of carbon to its bare elemental form, and pressures (P) greater than 5 GPa to cross the graphite-diamond transition boundary. In a study of shocked ferromagnesian carbonate at the Xiuyan impact crater, we found that the impact pressure-temperature (P-T) of 25-45 GPa and 800-900 °C were sufficient to decompose ankerite Ca(Fe2+,Mg)(CO3)2 to form diamond in the absence of another reductant. The carbonate self-reduced to diamond by concurrent oxidation of Fe2+ to Fe3+ to form a high-P polymorph of magnesioferrite, MgFe3+2O4 Discovery of the subsolidus carbonate self-reduction mechanism indicates that diamonds could be ubiquitously present as a dominant host for carbon in the Earth's lower mantle.

4.
Proc Natl Acad Sci U S A ; 109(41): 16459-62, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-23012455

RESUMO

Using synchrotron high-pressure X-ray diffraction at cryogenic temperatures, we have established the phase diagram for calcium up to 110 GPa and 5-300 K. We discovered the long-sought for theoretically predicted ß-tin structured calcium with I4(1)/amd symmetry at 35 GPa in a s mall low-temperature range below 10 K, thus resolving the enigma of absence of this lowest enthalpy phase. The stability and relations among various distorted simple-cubic phases in the Ca-III region have also been examined and clarified over a wide range of high pressures and low temperatures.


Assuntos
Cálcio/química , Transição de Fase , Estanho/química , Modelos Químicos , Modelos Moleculares , Pressão , Temperatura , Difração de Raios X/métodos
5.
Proc Natl Acad Sci U S A ; 108(51): 20434-7, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22143758

RESUMO

Sodium, which has long been regarded as one of the simplest metals, displays a great deal of structural, optical, and electronic complexities under compression. We compressed pure Na in the body-centered cubic structure to 52 GPa and in the face-centered cubic structure from 64 to 97 GPa, and studied the plasmon excitations of both structures using the momentum-dependent inelastic X-ray scattering technique. The plasmon dispersion curves as a function of pressure were extrapolated to zero momentum with a quadratic approximation. As predicted by the simple free-electron model, the square of the zero-momentum plasmon energy increases linearly with densification of the body-centered cubic Na up to 1.5-fold. At further compressions and in face-centered cubic Na above 64 GPa, the linear relation curves progressively toward the density axis up to 3.7-fold densification at 97 GPa. Ab initio calculations indicate that the deviation is an expected behavior of Na remaining a simple metal.


Assuntos
Sódio/química , Eletroquímica/métodos , Eletrônica , Elétrons , Gases , Metais/química , Conformação Molecular , Pressão , Espalhamento de Radiação , Raios X
6.
Adv Mater ; 36(25): e2400396, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38528795

RESUMO

The oligomers of carbon suboxide, known as red carbon, exhibit a highly conjugated structure and semiconducting properties. Upon mild heat treatment, it transforms into a carbonaceous framework rich in oxygen surface terminations, called oxocarbon. In this study, the abundant oxygen functionalities are harnessed as anchors to create oxocarbon-supported nanohybrid electrocatalysts. Starting with single atomic Cu (II) strongly coordinated to oxygen atoms on red carbon, the Fehling reaction leads to the formation of Cu2O clusters. Simultaneously, a covalent oxocarbon framework emerges via cross-linking, providing robust support for Cu2O clusters. Notably, the oxocarbon support effectively stabilizes Cu2O clusters of very small size, ensuring their high durability in acidic conditions and the presence of ammonia. The synthesized material exhibits a superior electrocatalytic activity for nitrate reduction under acidic electrolyte conditions, with a high yield rate of ammonium (NH4 +) at 3.31 mmol h-1 mgcat -1 and a Faradaic efficiency of 92.5% at a potential of -0.4 V (vs RHE).

7.
Proc Natl Acad Sci U S A ; 107(14): 6140-5, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20304801

RESUMO

The use of nanoscale x-ray probes overcomes several key limitations in the study of materials up to multimegabar (> 200) pressures, namely, the spatial resolution of measurements of multiple samples, stress gradients, and crystal domains in micron to submicron size samples in diamond-anvil cells. Mixtures of Fe, Pt, and W were studied up to 282 GPa with 250-600 nm size synchrotron x-ray absorption and diffraction probes. The probes readily resolve signals from individual materials, between sample and gasket, and peak pressures, in contrast to the 5-microm-sized x-ray beams that are now becoming routine. The use of nanoscale x-ray beams also enables single-crystal x-ray diffraction studies in nominally polycrystalline samples at ultrahigh pressures, as demonstrated in measurements of (Mg,Fe)SiO(3) postperovskite. These capabilities have potential for driving a push toward higher maximum pressures and further miniaturization of high-pressure devices, in the process advancing studies at extreme conditions.

8.
Proc Natl Acad Sci U S A ; 107(22): 9965-8, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20479266

RESUMO

Ca-III, the first superconducting calcium phase under pressure, was identified as simple-cubic (sc) by previous X-ray diffraction (XRD) experiments. In contrast, all previous theoretical calculations showed that sc had a higher enthalpy than many proposed structures and had an imaginary (unstable) phonon branch. By using our newly developed submicrometer high-pressure single-crystal XRD, cryogenic high-pressure XRD, and theoretical calculations, we demonstrate that Ca-III is neither exactly sc nor any of the lower-enthalpy phases, but sustains the sc-like, primitive unit by a rhombohedral distortion at 300 K and a monoclinic distortion below 30 K. This surprising discovery reveals a scenario that the high-pressure structure of calcium does not go to the zero-temperature global enthalpy minimum but is dictated by high-temperature anharmonicity and low-temperature metastability fine-tuned with phonon stability at the local minimum.

9.
Proc Natl Acad Sci U S A ; 106(8): 2515-8, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19188608

RESUMO

The formation of substitutional alloys has been restricted to elements with similar atomic radii and electronegativity. Using high-pressure at 298 K, we synthesized a face-centered cubic disordered alloy of highly dissimilar elements (large Ce and small Al atoms) by compressing the Ce(3)Al intermetallic compound >15 GPa or the Ce(3)Al metallic glass >25 GPa. Synchrotron X-ray diffraction, Ce L(3)-edge absorption spectroscopy, and ab initio calculations revealed that the pressure-induced Kondo volume collapse and 4f electron delocalization of Ce reduced the differences between Ce and Al and brought them within the Hume-Rothery (HR) limit for substitutional alloying. The alloy remained after complete release of pressure, which was also accompanied by the transformation of Ce back to its ambient 4f electron localized state and reversal of the Kondo volume collapse, resulting in a non-HR alloy at ambient conditions.

10.
Phys Rev Lett ; 107(17): 175504, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107536

RESUMO

Compressing glassy carbon above 40 GPa, we have observed a new carbon allotrope with a fully sp(3)-bonded amorphous structure and diamondlike strength. Synchrotron x-ray Raman spectroscopy revealed a continuous pressure-induced sp(2)-to-sp(3) bonding change, while x-ray diffraction confirmed the perseverance of noncrystallinity. The transition was reversible upon releasing pressure. Used as an indenter, the glassy carbon ball demonstrated exceptional strength by reaching 130 GPa with a confining pressure of 60 GPa. Such an extremely large stress difference of >70 GPa has never been observed in any material besides diamond, indicating the high hardness of this high-pressure carbon allotrope.

11.
Proc Natl Acad Sci U S A ; 105(33): 11640-4, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18687889

RESUMO

The detailing of the intermolecular interactions in dense solid oxygen is essential for an understanding of the rich polymorphism and remarkable properties of this element at high pressure. Synchrotron inelastic x-ray scattering measurements of oxygen K-edge excitations to 38 GPa reveal changes in electronic structure and bonding on compression of the molecular solid. The measurements show that O(2) molecules interact predominantly through the half-filled 1pi(g)* orbital <10 GPa. Enhanced intermolecular interactions develop because of increasing overlap of the 1pi(g)* orbital in the low-pressure phases, leading to electron delocalization and ultimately intermolecular bonding between O(2) molecules at the transition to the epsilon-phase. The epsilon-phase, which consists of (O(2))(4) clusters, displays the bonding characteristics of a closed-shell system. Increasing interactions between (O(2))(4) clusters develop upon compression of the epsilon-phase, and provide a potential mechanism for intercluster bonding in still higher-pressure phases.

12.
Proc Natl Acad Sci U S A ; 105(23): 7925-9, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18535140

RESUMO

Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; 3O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.

13.
Phys Rev Lett ; 104(10): 105702, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20366436

RESUMO

Using high-pressure synchrotron x-ray absorption spectroscopy, we observed the Ce 4f electron in Ce(75)Al(25) metallic glass transform from its ambient localized state to an itinerant state above 5 GPa. A parallel x-ray diffraction study revealed a volume collapse of about 8.6%, coinciding with 4f delocalization. The transition started from a low-density state below 1.5 GPa, went through continuous densification ending with a high-density state above 5 GPa. This new type of electronic polyamorphism in densely packed metallic glass is dictated by the Ce constituent, and is fundamentally distinct from the well-established structural polyamorphism in which densification is caused by coordination change and atomic rearrangement.

14.
Phys Rev Lett ; 105(18): 186404, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21231121

RESUMO

Using inelastic x-ray scattering techniques, we have succeeded in probing the high-pressure electronic structure of helium at 300 K. Helium has the widest known valence-conduction band gap of all materials a property whose high-pressure response has been inaccessible to direct measurements. We observed a rich electron excitation spectrum, including a cutoff edge above 23 eV, a sharp exciton peak showing linear volume dependence, and a series of excitations and continuum at 26 to 45 eV. We determined the electronic dispersion along the Γ-M direction over two Brillouin zones, and provided a quantitative picture of the helium exciton beyond the simplified Wannier-Frenkel description.

15.
Sci Adv ; 3(6): e1603213, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630918

RESUMO

Carbon's unique ability to have both sp2 and sp3 bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp2-hybridized glassy carbon at various temperatures. Compression induces the local buckling of graphene sheets through sp3 nodes to form interpenetrating graphene networks with long-range disorder and short-range order on the nanometer scale. The compressed glassy carbons have extraordinary specific compressive strengths-more than two times that of commonly used ceramics-and simultaneously exhibit robust elastic recovery in response to local deformations. This type of carbon is an optimal ultralight, ultrastrong material for a wide range of multifunctional applications, and the synthesis methodology demonstrates potential to access entirely new metastable materials with exceptional properties.

16.
J Phys Condens Matter ; 18(25): S963-8, 2006 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22611105

RESUMO

The elasticity and plasticity of materials at high pressure are of great importance for the fundamental insight they provide on bonding properties in dense matter and for applications ranging from geophysics to materials technology. We studied pressure-solidified argon with a boron-epoxy-beryllium composite gasket in a diamond anvil cell (DAC). Employing monochromatic synchrotron x-radiation and imaging plates in a radial diffraction geometry (Singh et al 1998 Phys. Rev. Lett. 80 2157; Mao et al 1998 Nature 396 741), we observed low strength in solid argon below 20 GPa, but the strength increases drastically with applied pressure, such that at 55 GPa, the shear strength exceeded 2.7 GPa. The elastic anisotropy at 55 GPa was four times higher than the extrapolated value from 30 GPa. Extensive (111) slip develops under uniaxial compression, as manifested by the preferred crystallographic orientation of (220) in the compression direction. These macroscopic properties reflect basic changes in van der Waals bondings under ultrahigh pressures.

17.
J Chem Phys ; 128(6): 064510, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18282059

RESUMO

Ice VII was examined over the entire range of its pressure stability by a suite of x-ray diffraction techniques in order to understand a number of unexplained characteristics of its high-pressure behavior. Axial and radial polycrystalline (diamond anvil cell) x-ray diffraction measurements reveal a splitting of diffraction lines accompanied by changes in sample texture and elastic anisotropy. In situ laser heating of polycrystalline samples resulted in the sharpening of diffraction peaks due to release of nonhydrostatic stresses but did not remove the splitting. Radial diffraction measurements indicate changes in strength of the material at this pressure. Taken together, these observations provide evidence for a transition in ice VII near 14 GPa involving changes in the character of the proton order/disorder. The results are consistent with previous reports of changes in phase boundaries and equation of state at this pressure. The transition can be interpreted as ferroelastic with the appearance of spontaneous strain that vanishes at the hydrogen bond symmetrization transition near 60 GPa.

18.
Phys Rev Lett ; 98(10): 105502, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17358545

RESUMO

We report the first in situ boron K-edge inelastic x-ray scattering (IXS) spectra for alkali borate glasses (Li2B4O7) at high pressure up to 30 GPa where pressure-induced coordination transformation from three-coordinated to four-coordinated boron was directly probed. Coordination transformation (reversible upon decompression) begins around 5 GPa and the fraction of four-coordinated boron increases with pressure from about 50% (at 1 atm) to more than 95% (at 30 GPa) with multiple densification mechanisms, evidenced by three distinct pressure ranges for (d[4]B/dP)T. The lithium K-edge IXS spectrum for Li-borate glasses at 5 GPa shows IXS features similar to that at 1 atm, suggesting that the Li environment does not change much with pressure up to 5 GPa. These results provide improved understanding of the structure of low-z glass at high pressure.

19.
Phys Rev Lett ; 98(8): 085502, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17359109

RESUMO

A phase transition was observed at 63-69 GPa and room temperature in vanadium with synchrotron x-ray diffraction. The transition is characterized as a rhombohedral lattice distortion of the body-centered-cubic vanadium without a discontinuity in the pressure-volume data, thus representing a novel type of transition that has never been observed in elements. Instead of driven by the conventional s-d electronic transition mechanism, the phase transition could be associated with the softening of C44 trigonal elasticity tensor that originates from the combination of Fermi surface nesting, band Jahn-Teller distortion, and electronic topological transition.

20.
Science ; 314(5799): 636-8, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-17068259

RESUMO

When subjected to high pressure and extensive x-radiation, water (H2O) molecules cleaved, forming O-O and H-H bonds. The oxygen (O) and hydrogen (H) framework in ice VII was converted into a molecular alloy of O2 and H2. X-ray diffraction, x-ray Raman scattering, and optical Raman spectroscopy demonstrated that this crystalline solid differs from previously known phases. It remained stable with respect to variations in pressure, temperature, and further x-ray and laser exposure, thus opening new possibilities for studying molecular interactions in the hydrogen-oxygen binary system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA